Articles

Aggregation-Induced Emission-Active Fluorescent Probe for Zn2+ Based on Isolongifolanone and Its Application in Plant-Cell Imaging

  • Wang Zhonglong ,
  • Yang Jinlai ,
  • Yang Yiqin ,
  • Xu Xu ,
  • Li Mingxin ,
  • Zhang Yan ,
  • Fang Hua ,
  • Xu Haijun ,
  • Wang Shifa
Expand
  • a College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037;
    b Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012;
    c Institute of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing 210037;
    d Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037;
    e Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037

Received date: 2017-12-05

  Revised date: 2018-03-05

  Online published: 2018-03-16

Supported by

Project supported by the Doctorate Fellowship Foundation of Nanjing Forestry University, the National Natural Science Foundation of China (No. 31470592), the University Science Research Project of Jiangsu Province (No. 14KJ220001), the Key Technology of Green Processing and Efficient Utilization on Oleoresin (No. 2016YFD0600804).

Abstract

A series of hexahydroquinazolin-2-amine-based derivatives have been designed and synthesized from renewable isolongifolanone. Their solid states exhibited an enhanced emission and a dark green to bright yellow color range. In addition to good thermal stability, their solid-state fluorescence is not readily restricted by multiple conventional factors such as long term UV irradiation, increasing operated pressure and elevated heating temperature. In contrast to the derivatives which undergo serious aggregation-caused quenching (ACQ), the dimethylamino-substituted derivative 1-6,6,10,10-tetramethyl-4-(4'-(N,N-dimethylamino)phenyl)-5,7,8,9,10,10a-hexahydro-6H-6a,9-methanobenzo[h]quinazolin-2-imino)methyl)naphthalen-2-ol (3e) demonstrate obvious aggregation-induced emission (AIE) characteristics. Moreover, these fluorescent derivatives were also used for specific and sensitive sensing of Zn2+ ion in aqueous solutions. Then, their photophysical mechanisms were obtained by the density functional theory calculations. These probes were successfully applied to image Zn2+ ion in pollen grains of Althaea rosea.

Cite this article

Wang Zhonglong , Yang Jinlai , Yang Yiqin , Xu Xu , Li Mingxin , Zhang Yan , Fang Hua , Xu Haijun , Wang Shifa . Aggregation-Induced Emission-Active Fluorescent Probe for Zn2+ Based on Isolongifolanone and Its Application in Plant-Cell Imaging[J]. Chinese Journal of Organic Chemistry, 2018 , 38(6) : 1401 -1413 . DOI: 10.6023/cjoc201712009

References

[1] Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.
[2] Owens, R. M.; Malliaras, G. G. MRS Bull. 2010, 35, 449.
[3] Hong., Y.; Lam., J. W. Y.; Tang., B. Z. Chem. Soc. Rev. 2011, 40, 5361.
[4] Sekkat, N.; van den Bergh, H.; Nyokong, T.; Lange, N. Molecules 2011, 17, 98.
[5] Sathiyan, G.; Sakthivel, P. Dyes Pigm. 2017, 143, 444.
[6] Zhang, F.; Di, Y.; Li, Y.; Qi, Q.; Qian, J.; Fu, X.; Xu, B.; Tian, W. Dyes Pigm. 2017, 142, 491.
[7] Chen, Y.; Bai, Y.; Han, Z.; He, W.; Guo, Z. Chem. Soc. Rev. 2015, 44, 4517.
[8] Ponnuvel, K.; Kumar, M.; Padmini, V. Sens. Actuators B:Chem. 2016, 227, 242.
[9] Ghosh, S. K.; Kim, P.; Zhang, X. A.; Yun, S. H.; Moore, A.; Lippard, S. J.; Medarova, Z. Cancer Res. 2010, 70, 6119.
[10] Zhou, Y.; Kim, H. N.; Yoon, J. Bioorg. Med. Chem. Lett. 2010, 20, 125.
[11] Zhao, Q.; Huang, C.; Li, F. Chem. Soc. Rev. 2011, 40, 2508.
[12] Wang, S.; Li, C.; Li, J.; Chen, B.; Guo, Y. Acta Chim. Sinica 2017, 75, 383(in Chinese). (王少静, 李长伟, 李锦, 陈邦, 郭媛, 化学学报, 2017, 75, 383.)
[13] Yang, L.; Liu, B.; Li, N.; Tang, B. Acta Chim. Sinica 2017, 75, 1047(in Chinese). (杨立敏, 刘波, 李娜, 唐波, 化学学报, 2017, 75, 1047.)
[14] Zhou, J.; Zhang, J.; Ren, H.; Dong, X.; Zheng, X.; Zhao, W. Chin. J. Chem. 2016, 34, 715.
[15] Wang, Y.; Zhao, B. Chin. J. Org. Chem. 2016, 36, 1539(in Chinese). (王延宝, 赵宝祥, 有机化学, 2016, 36, 1539.)
[16] Kimura, E.; Koike, T. Chem. Soc. Rev. 1998, 27, 179.
[17] Falchuk, K. H. Mol. Cell. Biochem. 1998, 188, 41.
[18] Cuajungco, M. P.; Lees, G. J. Neurobiol. Dis. 1997, 4, 137.
[19] Choi, D. W.; Koh, J. Y. Annu.Rev. Neurosci. 1998, 21, 347.
[20] Maret, W.; Jcob, C.; Vallee, B. L.; Fisher, E. H. Proc. Natil. Acad. Sci. U. S. A. 1999, 96, 1936.
[21] Liu, X.; Fu, C.; Ren, X.; Liu, H.; Li, L.; Meng, X. Biosens. Bioelectron. 2015, 74, 322.
[22] Yuan, C.; Liu, X.; Wu, Y.; Lu, L.; Zhu, M. Spectrochim. Acta, Part A 2016, 154, 215.
[23] Qu, L.; Yin, C.; Huo, F.; Chao, J.; Zhang, Y.; Cheng, F. Sens. Actuators, B 2014, 191, 158.
[24] Li, N.; Xiang, Y.; Chen, X.; Tong, A. Talanta 2009, 79, 327.
[25] Young, D. M.; Welker, J. J. C.; Doxsee, K. M. J. Chem. Educ. 2011, 88, 319.
[26] Vargas, F.; Rivas, C.; Medrano, M. Toxicol. Mech. Methods 2004, 14, 227.
[27] Perna, G.; Palazzo, G.; Mallardi, A.; Capozzi, V. J.Lumin. 2011, 131, 1584.
[28] Shiraishi, Y.; Nakamura, M.; Kogure, T.; Hirai, T. New J.Chem. 2016, 40, 1237.
[29] Orrego-Hernandez, J.; Nunez-Dallos, N.; Portilla, J. Talanta 2016, 152, 432.
[30] Yu, S.-Y.; Hsu, C.-Y.; Chen, W.-C.; Wei, L.-F.; Wu, S.-P. Sens. Actuators, B 2014, 196, 203.
[31] Nayak, U. R.; Dev, S. Tetrahedron 1960, 8, 42.
[32] Jian, R.; Jianlai, Y.; Jianfeng, H.; Jiayu, W.; Xu, X.; Haijun, X.; Shifa, W. Chin. J. Org. Chem. 2016, 36, 2183(in Chinese). (芮坚, 杨金来, 黄建峰, 王佳瑜, 徐徐, 徐海军, 王石发, 有机化学, 2016, 36, 2183.)
[33] Kar, C.; Adhikari, M. D.; Datta, B. K.; Ramesh, A.; Das, G. Sens. Actuators, B 2013, 188, 1132.
[34] Chen, X.; Xiang, Y.; Li, Z.; Tong, A. Anal. Chim.Acta 2008, 625, 41.
[35] Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
[36] Lee, C.; Yang, W.; Parr, R. G. Physic. Rev. B 1988, 37, 785.

Outlines

/