Chinese Journal of Organic Chemistry >
Research Progress on the Reaction of Carbon Dioxide with Nucleophiles
Received date: 2018-01-30
Revised date: 2018-03-02
Online published: 2018-03-16
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21542015, 21672157), and the Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 16KJA150002).
Carbon dioxide as a green and cheap C1 synthon has significant research value and industrial application prospect. In recent years, using carbon dioxide to synthesize cyclic carbamates, quinazoline-2,4-(1H,3H)-diones, cyclic lactones and other heterocyclic compounds have been research hotspot. Many of the heterocyclic compounds can be synthesized by reacting the carbon atom in carbon dioxide with electron deficient with nucleophiles. This review focuses on the recent intermolecular and intramolecular reactions of carbon dioxide with nucleophiles centered around nitrogen, oxygen, or carbon.
Key words: carbon dioxide; nucleophiles; electrophiles; amino; hydroxyl; carbanion
Xu Pei , Wang Shun-Yi , Fang Yi , Ji Shun-Jun . Research Progress on the Reaction of Carbon Dioxide with Nucleophiles[J]. Chinese Journal of Organic Chemistry, 2018 , 38(7) : 1626 -1637 . DOI: 10.6023/cjoc201801046
[1] Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933.
[2] Gui, Y.-Y.; Zhou, W.-J.; Ye, J.-H.; Yu, D.-G. ChemSusChem 2017, 10, 1337.
[3] Huang, K.; Sun, C.-L.; Shi, Z.-J. Chem. Soc. Rev. 2011, 40, 2435.
[4] Zhu, Q.; Wang, L.; Xia, C.; Liu, C. Chin. J. Org. Chem. 2016, 36, 2813 (in Chinese).
(朱庆, 王露, 夏春谷, 刘超, 有机化学, 2016, 36, 2813.)
[5] Zhang, S.; Li, X.; He, L.-N. Acta Chim. Sinica 2016, 74, 17 (in Chinese).
(张帅, 李雪冬, 何良年, 化学学报, 2016, 74, 17.)
[6] Song, Q.-W.; Zhou, Z.-H.; He, L.-N. Green Chem. 2017, 19, 3707.
[7] Zhang, W.; Zhang, N.; Guo, C.; Lv, X. Chin. J. Org. Chem. 2017, 37, 1309 (in Chinese).
(张文珍, 张宁, 郭晓春, 吕小兵, 有机化学, 2017, 37, 1309.)
[8] Song, J.; Liu, Q. Liu, H.; Jiang, X. Eur. J. Org. Chem. 2018, 696.
[9] Wang, S.; Du, G.; Xi, C. Org. Biomol. Chem. 2016, 14, 3666.
[10] Yu, B.; He, L.-N. ChemSusChem 2015, 8, 52.
[11] Salvatore, R. N.; Shin, S. I.; Nagle, A. S.; Jung, K. W. J. Org. Chem. 2001, 66, 1035.
[12] Zhang, W.-Z.; Ren, X.; Lu, X.-B. Chin. J. Chem. 2015, 33, 610.
[13] Xiong, W.; Qi, C.; He, H.; Ouyang, L.; Zhang, M.; Jiang, H. Angew. Chem., Int. Ed. 2015, 54, 3084.
[14] Xiong, W.; Qi, C.; Peng, Y.; Guo, T.; Zhang, M.; Jiang, H. Chem. Eur. J. 2015, 21, 14314.
[15] Xiong, W.; Qi, C.; Guo, T.; Zhang, M.; Chen, K.; Jiang, H. Green Chem. 2017, 19, 1642.
[16] Peng, Y.; Liu, J.; Qi, C.; Yuan, G.; Li, J.; Jiang, H. Chem. Commun. 2017, 53, 2665.
[17] Zhang, M.; Zhao, X.; Zheng, S. Chem. Commun. 2014, 50, 4455.
[18] Cai, J.; Zhang, M.; Zhao, X. Eur. J. Org. Chem. 2015, 5925.
[19] Xu, P.; Wang, F.; Wei, T.-Q.; Yin, L.; Wang, S.-Y.; Ji, S.-J. Org. Lett. 2017, 19, 4484.
[20] Mampuys, P.; Neumann, H.; Sergeyev, S.; Orru, R. V. A.; Jiao, H.; Spannenberg, A.; Maes, B. U. W.; Beller, M. ACS Catal. 2017, 7, 5549.
[21] Zhang, W.-Z.; Li, H.; Zeng, Y.; Tao, X.; Lu, X. Chin. J. Chem. 2018, 36, 112.
[22] Zhang, W.-Z.; Zhang, N.; Sun, Y.-Q.; Ding, Y.-W.; Lu, X.-B. ACS Catal. 2017, 7, 8072.
[23] Didehban, K.; Vessally, E.; Salary, M.; Edjlali, L.; Babazadeh, M. J. CO2 Util. 2018, 23, 42.
[24] Ishida, T.; Kikuchi, S.; Tsubo, T.; Yamada, T. Org. Lett. 2013, 15, 848.
[25] Ishida, T.; Kikuchi, S.; Yamada, T. Org. Lett. 2013, 15, 3710.
[26] Guo, C.-X.; Zhang, W.-Z.; Liu, S.; Lu, X.-B. Catal. Sci. Technol. 2014, 4, 1570.
[27] Ali, W.; Modi, A.; Behera, A.; Mohanta, P. R.; Patel, B. K. Org. Biomol. Chem. 2016, 14, 5940.
[28] Ishida, T.; Kobayashi, R.; Yamada, T. Org. Lett. 2014, 16, 2430.
[29] Gao, X.-T.; Gan, C.-C.; Liu, S.-Y.; Zhou, F.; Wu, H.-H.; Zhou, J. ACS Catal. 2017, 7, 8588.
[30] Yoo, W.-J.; Li, C.-J. Adv. Synth. Catal. 2008, 350, 1503.
[31] Yu, B.; Cheng, B.-B.; Liu, W.-Q.; Li, W.; Wang, S.-S.; Cao, J.; Hu, C.-W. Adv. Synth. Catal. 2016, 358, 90.
[32] Arshadi, S.; Vessally, E.; Hosseinian, A.; Soleimani-amiri, S.; Edjlali, L. J. CO2 Util. 2017, 21, 108.
[33] Song, Q.-W.; Liu, P.; Han, L.-H.; Zhang, K.; He, L.-N. Chin. J. Chem. 2018, 36, 147.
[34] He, H.; Qi, C.; Hu, X.; Guan, Y.; Jiang, H. Green Chem. 2014, 16, 3729.
[35] Qi, C.; Jiang, H.; Huang, L.; Yuan, G.; Ren, Y. Org. Lett. 2011, 13, 5520.
[36] Sugawara, Y.; Yamada, W.; Yoshida, S.; Ikeno, T.; Yamada, T. J. Am. Chem. Soc. 2007, 129, 12902.
[37] Garcia-Dominguez, P.; Fehr, L.; Rusconi, G.; Nevado, C. Chem. Sci. 2016, 7, 3914.
[38] Sun, S.; Wang, B.; Gu, N.; Yu, J.-T.; Cheng, J. Org. Lett. 2017, 19, 1088.
[39] Wang, B.; Sun, S.; Yu, J.-T.; Jiang, Y.; Cheng, J. Org. Lett. 2017, 19, 4319.
[40] Yoshida, M.; Ihara, M. Angew. Chem., Int. Ed. 2001, 3, 40.
[41] Kayaki, Y.; Mori, N.; Ikariya, T. Tetrahedron Lett. 2009, 50, 6491.
[42] Chen, G.; Fu, C.; Ma, S. Org. Lett. 2009, 11, 2900.
[43] Li, S.; Ye, J.; Yuan, W.; Ma, S. Tetrahedron 2013, 69, 10450.
[44] Ye, J.; Li, S.; Ma, S. Org. Biomol. Chem. 2013, 11, 5370.
[45] Ye, J.-H.; Song, L.; Zhou, W.-J.; Ju, T.; Yin, Z.-B.; Yan, S.-S.; Zhang, Z.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2016, 55, 10022.
[46] Yin, Z.-B.; Ye, J.-H.; Zhou, W.-J.; Zhang, Y.-H.; Ding, L.; Gui, Y.-Y.; Yan, S.-S.; Li, J.; Yu, D.-G. Org. Lett. 2018, 20, 190.
[47] Ye, J.-H.; Zhu, L.; Yan, S.-S.; Miao, M.; Zhang, X.-C.; Zhou, W.-J.; Li, J.; Lan, Y.; Yu, D.-G. ACS Catal. 2017, 7, 8324.
[48] Wang, M.-Y.; Cao, Y.; Liu, X.; Wang, N.; He, L.-N.; Li, S.-H. Green Chem. 2017, 19, 1240.
[49] Wang, S.; Zhang, X.; Cao, C.; Chen, C.; Xi, C. Green Chem. 2017, 19, 4515.
[50] Vara, B. A.; Struble, T. J.; Wang, W.; Dobish, M. C.; Johnston, J. N. J. Am. Chem. Soc. 2015, 137, 7302.
[51] Zhang, Z.; Liao, L.-L.; Yan, S.-S.; Wang, L.; He, Y.-Q.; Ye, J.-H.; Li, J.; Zhi, Y.-G.; Yu, D.-G. Angew. Chem., Int. Ed. 2016, 55, 7068.
[52] Zhang, Z.; Ju, T.; Miao, M.; Han, J.-L.; Zhang, Y.-H.; Zhu, X.-Y.; Ye, J.-H.; Yu, D.-G.; Zhi, Y.-G. Org. Lett. 2017, 19, 396.
[53] Wang, S.; Shao, P.; Du, G.; Xi, C. J. Org. Chem. 2016, 81, 6672.
[54] Sun, S.; Hu, W.-M.; Gu, N.; Cheng, J. Chem. Eur. J. 2016, 22, 18729.
[55] Konnert, L.; Lamaty, F.; Martinez, J.; Colacino, E. Chem. Rev. 2017, 117, 13757.
[56] Rasal, K. B.; Yadav, G. D. Org. Process Res. Dev. 2016, 20, 2067.
[57] Mizuno, T.; Mihara, M.; Nakai, T.; Iwai, T.; Ito, T. Synthesis 2007, 2524.
[58] Gao, J. He, L.-N.; Miao, C.-X.; Chanfreau, S. Tetrahedron 2010, 66, 4063.
[59] Kimura, T.; Kamata, K.; Mizuno, N. Angew. Chem., Int. Ed. 2012, 51, 6700.
[60] Zhao, Y.; Yu, B.; Yang, Z.; Zhang, H.; Hao, L.; Gao, X.; Liu, Z. Angew. Chem., Int. Ed. 2014, 53, 5922.
[61] Lu, W.; Ma, J.; Hu, J.; Song, J.; Zhang, Z.; Yang, G.; Han, B. Green Chem. 2014, 16, 221.
[62] Yoshida, H.; Fukushima, H.; Ohshita, J.; Yoshida, H. J. Am. Chem. Soc. 2006, 128, 11040.
[63] Yoshida, H.; Morishita, T.; Ohshita, J. Org. Lett. 2008, 10, 3845.
[64] Yoshida, S.; Hosoya, T. Chem. Lett. 2013, 42, 583.
[65] Kaicharla, T.; Thangaraj, M.; Biju, A. T. Org. Lett. 2014, 16, 1728.
[66] Fang, Y.; Wang, S.-Y.; Ji, S.-J. Tetraherdron 2015, 71, 2768.
[67] Yoo, W.-J.; Nguyen, T. V. Q.; Kobayashi, S. Angew. Chem., Int. Ed. 2014, 53, 10213
[68] Bhojgude, S. S.; Roy, T.; Gonnade, R. G.; Biju, A. T. Org. Lett. 2016, 18, 5424.
[69] Mita, T.; Chen, J.; Sugawara, M.; Sato, Y. Org. Lett. 2012, 14, 6202.
[70] Mita, T.; Sugawara, M.; Saito, K.; Sato, Y. Org. Lett. 2014, 16, 3028.
[71] Mita, T.; Michigami, K.; Saito, K.; Sato, Y. Org. Lett. 2012, 14, 3462.
[72] Mita, T.; Sugawara, M.; Sato, Y. J. Org. Chem. 2016, 81, 5236.
[73] Mita, T.; Chen, J.; Sugawara, M.; Sato, Y. Angew. Chem., Int. Ed. 2011, 50, 1393.
[74] Yoo, W.-J.; Capdevila, M. G.; Du, X.; Kobayashi, S. Org. Lett. 2012, 14, 5326.
[75] Sun, S.; Yu, J.-T.; Jiang, Y.; Cheng, J. J. Org. Chem. 2015, 80, 2855.
[76] Liu, Q.; Li, M.; Xiong, R.; Mo, F. Org. Lett. 2017, 19, 6756.
[77] Guo, C.-X.; Zhang, W.-Z.; Zhou, H.; Zhang, N.; Lu, X.-B. Chem. Eur. J. 2016, 22, 17156.
[78] Zhao, L.-L.; Wang, S.-Y.; Xu, X.-P.; Ji, S.-J. Chem. Commun. 2013, 49, 2569.
[79] Sekine, K.; Sadamitsu, Y.; Yamada, T. Org. Lett. 2015, 17, 5706.
[80] Xin, Z.; Lescot, C.; Friis, S. D.; Daasbjerg, K.; Skrydstrup, T. Angew. Chem., Int. Ed. 2015, 54, 16862.
[81] Kikuchi, S.; Sekine, K.; Ishida, T.; Yamada, T. Angew. Chem., Int. Ed. 2012, 51, 6989.
[82] Sadamitsu, Y.; Komatsuki, K.; Saito, K.; Yamada, T. Org. Lett. 2017, 19, 3191.
[83] Sekine, K.; Takayanagi, A.; Kikuchi, S.; Yamada, T. Chem. Commun. 2013, 49, 11320.
[84] Zhang, W.-Z.; Shi, L.-L.; Liu, C.; Yang, X.-T.; Wang, Y.-B.; Luo, Y.; Lu, X.-B. Org. Chem. Front. 2014, 1, 275.
[85] Zhang, W.-Z.; Yang, M.-W.; Yang, X.-T.; Shi, L.-L.; Wang, H.-B.; Lu, X.-B. Org. Chem. Front. 2016, 3, 217.
/
〈 |
|
〉 |