Reviews

Recent Advances in Transition Metal-Catalyzed Denitration-Coupling of Nitroarenes

  • Wang Yuchao ,
  • Ye Qiuxiang ,
  • Qiu Guanyinsheng ,
  • Liu Jin-Biao
Expand
  • a School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000;
    b College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001

Received date: 2018-01-30

  Revised date: 2018-03-01

  Online published: 2018-03-29

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21762018, 21772067), the Natural Science Foundation of Jiangxi Province (No. 20171BAB213008), the Postdoctoral Science Foundation of Jiangxi Province (No. 2017KY22), the Program of Qingjiang Excellent Young Talents of Jiangxi University of Science and Technology (No. JXUSTQJYX2017004) and the Innovation and Entrepreneurship Training Program of Jiangxi University of Science and Technology (No. XZG-16-08-13).

Abstract

Nitroarenes are easily synthesized, highly versatile and common aromatic building blocks in organic synthesis. Recently, transition metal-catalyzed denitration-coupling of nitroarenes has attracted extensive attention. The recent advances in denitration-coupling of nitroarenes for the formation of C-X (C) bonds under transition metal-catalysis conditions are summarized.

Cite this article

Wang Yuchao , Ye Qiuxiang , Qiu Guanyinsheng , Liu Jin-Biao . Recent Advances in Transition Metal-Catalyzed Denitration-Coupling of Nitroarenes[J]. Chinese Journal of Organic Chemistry, 2018 , 38(7) : 1650 -1655 . DOI: 10.6023/cjoc201801045

References

[1] (a) Tamao, K..; Hiyama, T.; Negishi, E. I. J. Organomet. Chem. 2002, 653.
(b) Miyaura, N. Bull. Chem. Soc. Jpn. 2008, 81, 1535.
(c) Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6722.
(d) Oestreich, M. The Mizoroki-Heck Reaction, Wiley, Chichester (UK), 2009.
[2] Roglans, A.; Pla-Quintana, A.; Moreno-Maas, M. Chem. Rev. 2006, 106, 4622.
[3] Liu, J.-B.; Yuan, S.-T.; Song, X.-X.; Qiu, G. Chin. J. Org. Chem. 2016, 36, 1790 (in Chinese).
(刘晋彪, 袁斯甜, 宋熙熙, 邱观音生, 有机化学, 2016, 36, 1790.)
[4] Rodríguez, N.; Goossen, L. J. Chem. Soc. Rev. 2011, 40, 5030.
[5] (a) Ortgies, D. H.; Hassanpour, A.; Chen, F.; Woo, S.; Forgione, P. Eur. J. Org. Chem. 2016, 408.
(b) Wang, D.; Yu, X.; Ge, B.; Miao, H.; Ding, Y. Chin. J. Org. Chem. 2015, 35, 676 (in Chinese).
(王大伟, 余晓丽, 葛冰洋, 苗红艳, 丁玉强, 有机化学, 2015, 35, 676.)
(c) Wang, D.; Yu, X.; Xu, X.; Ge, B.; Wang, X.; Zhang, Y. Chem.-Eur. J. 2016, 22, 8663.
[6] Yan, G.-B.; Yang, M.-H. Org. Biomol. Chem. 2013, 11, 2554.
[7] Hodgson, H. H. Chem. Rev. 1947, 40, 251.
[8] Yang, Y. Angew. Chem., Int. Ed. 2017, 56, 15802.
[9] Kornblum, N.; Cheng, L.; Kerber, R. C.; Kestner, M. M.; Newton, B. N.; Pinnick, H. W.; Smith, R. G.; Wade, P. A. J. Org. Chem. 1976, 41, 1560.
[10] (a) Tejero, I.; Huertas, I.; González-Lafont, À.; Lluch, J. M.; Marquet, J. J. Org. Chem. 2005, 70, 1718.
(b) Boechat, N.; Clark, J. H. J. Chem. Soc., Chem. Commun. 1993, 921.
(c) Shifman, A.; Palani, N.; Hoz, S. Angew. Chem., Int. Ed. 2000, 112, 974.
(d) Sun, H.; DiMagno, S. G. Angew. Chem., Int. Ed. 2006, 45, 2720.
(e) Denney, D. B.; Denney, D. Z.; Perez, A. J. Tetrahedron 1993, 49, 4463.
(e) Heller, R. A.; Weiler, R. Can. J. Chem. 1987, 65, 251.
[11] (a) Pei, P.; Zhang, F.; Lei, A. Acta Chim. Sinica 2017, 75, 15 (in Chinese).
(裴朋昆, 张凡, 易红, 雷爱文, 化学学报, 2017, 75, 15.)
(b) Shao, Z.; Xu, W.; Li, L.; Zhang, X. Chin. J. Org. Chem. 2017, 37, 335 (in Chinese).
(邵长伟, 徐炜刚, 李亮, 张兴华, 有机化学, 2017, 37, 335.)
(c) Zhang, J.-R.; Xu, L.; Liao, Y.-Y.; Deng, J.-C.; Tang, R.-Y. Chin. J. Chem. 2017, 35, 271.
(d) Zhong, J.; Meng, Q.; Chen, B.; Tong, Z.; Wu, L. Acta Chim. Sinica 2017, 75, 34 (in Chinese).
(钟建基, 孟庆元, 陈彬, 佟振合, 吴骊珠, 化学学报, 2017, 75, 34.)
[12] (a) Tamura, R.; Hegedus, L. S. J. Am. Chem. Soc. 1982, 104, 3727.
(b) Ono, N.; Hamamoto, I.; Kaji, A. J. Chem. Soc., Chem. Commun. 1982, 821.
(c) Tamura, R.; Kai, Y.; Kakihara, M.; Hayashi, K.; Tsuji, M.; Nakamura, T.; Oda, D. J. Org. Chem. 1986, 51, 4375.
(d) Ono, N.; Hamamoto, I.; Kaji, A. J. Chem. Soc., Perkin Trans. 1 1986, 1439.
(e) Barco, A.; Benetti, S.; Spalluto, G.; Casolari, A.; Pollini, G. P.; Zanirato, V. J. Org. Chem. 1992, 57, 6279.
(f) Padilla-Salinas, R.; Walvoord, R. R.; Tcyrulnikov, S.; Kozlowski, M. C. Org. Lett. 2013, 15, 3966.
(g) Padilla-Salinas, R.; Walvoord, R. R.; Tcyrulnikov, S.; Kozlowski, M. C. J. Org. Chem. 2014, 79, 8103.
[13] Zheng, R.-S.; Ding, J.-C.; Chen, J.-X.; Liu, M.-C.; Wu, H.-Y. Org. Lett. 2011, 13, 1726.
[14] Zheng, J.-L.; Chen, J.-X.; Liu, M.-C.; Zheng, X.-W.; Ding, J.-C.; Wu, H.-Y. Green Chem. 2012, 14, 912.
[15] Chen, J.-X.; Wang, X.-Y.; Zheng, X.-W.; Ding, J.-C.; Liu, M.-C.; Wu, H.-Y. Tetrahedron 2012, 68, 8905.
[16] Peng, D.-P.; Yu, A.-J.; Wang, H.-L.; Wu, Y.-J.; Chang, J.-B. Tetrahedron 2013, 69, 6884.
[17] Phan, N. T. S.; Nguyen, T. T.; Nguyen, V. T.; Nguyen, K. D. ChemCatChem 2013, 5, 2061.
[18] Xu, X.; Feng, T.; He, J.; Xu, H. Chin. J. Org. Chem. 2016, 36, 1021 (in Chinese).
(徐小岚, 冯腾, 何建波, 许华建, 有机化学, 2016, 36, 1021.)
[19] Maity, T.; Saha, D.; Bhunia, S.; Brandao, P.; Das, S.; Koner, S. RSC Adv. 2015, 5, 82179.
[20] Maity, T.; Bhunia, S.; Das, S.; Koner, S. RSC Adv. 2016, 6, 33380.
[21] Wang, H.-L.; Yu, A.-J.; Cao, A.-J.; Chang, J.-B.; Wu, Y.-J. Appl. Organomet. Chem. 2013, 27, 611.
[22] Begum, T.; Mondal, M.; Borpuzari, M. P.; Kar, R.; Gogoi, P. K.; Bora, U. Eur. J. Org. Chem. 2017, 3244.
[23] Bahekar, S. S.; Sarkate, A. P.; Wadhai, V. M.; Wakte, P. S.; Shinde, D. B. Catal. Commun. 2013, 41, 123.
[24] Rostami, A.; Rostami, A.; Ghaderi, A. J. Org. Chem. 2015, 80, 8694.
[25] Moghaddam, F. M.; Pourkaveh, R. Catal. Commun. 2017, 94, 33.
[26] Tian, H.; Cao, A.-J.; Qiao, L.-J.; Yu, A.-J. Chang, J.-B.; Wu, Y.-J. Tetrahedron 2014, 70, 9107.
[27] Yadav, M. R.; Nagaoka, M.; Kashihara, M.; Zhong, R. L.; Miyazaki, T.; Sakaki, S.; Nakao, Y. J. Am. Chem. Soc. 2017, 139, 9423.
[28] Inoue, F.; Kashihara, M.; Yadav, M. R.; Nakao, Y. Angew. Chem., Int. Ed. 2017, 56, 13307.

Outlines

/