Notes

K2S2O8/H2O/NaOTf System-Promoted Schmidt Rearrangement Reaction of Vinyl Azides

  • Xu Zheng ,
  • Zhou Bingwei ,
  • Jin Hongwei ,
  • Liu Yunkui
Expand
  • State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014

Received date: 2018-01-18

  Revised date: 2018-03-19

  Online published: 2018-04-04

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21772176, 21372201), the Opening Foundation of Zhejiang Key Course of Chemical Engineering and Technology, Zhejiang University of Technology.

Abstract

Under neutral reaction conditions, sodium triflate promotes the radical reaction of potassium persulfate with water to yield a proton which induces Schmidt rearrangement of alkenyl azides. A variety of substituted acetanilide compounds were synthesized in one step. To obtain the optimal reaction conditions, an arrange of reaction parameters such as radical initiator, solvent, temperature, and reaction time have been screened. This reaction features an easy accessibility of starting materials, simple operation, broad substrate scope and so on. We finally proposed the plausible mechanism based on the mechanistic studies and previous literature.

Cite this article

Xu Zheng , Zhou Bingwei , Jin Hongwei , Liu Yunkui . K2S2O8/H2O/NaOTf System-Promoted Schmidt Rearrangement Reaction of Vinyl Azides[J]. Chinese Journal of Organic Chemistry, 2018 , 38(7) : 1823 -1828 . DOI: 10.6023/cjoc201801025

References

[1] (a) Sana, S.; Rajanna, K. C.; Reddy, K. R.; Bhooshan, M.; Venkateswarlu, M.; Kumar, M. S.; Uppalaiah, K. Green Sustainable Chem. 2012, 2, 97.
(b) Sana, S.; Rajanna, K. C.; Ali, M. M.; Saiprakash, P. K. Chem. Lett. 2000, 48.
[2] Sultane, P. R.; Mete, T. B.; Bhat, R. G. Org. Biomol. Chem. 2014, 12, 261.
[3] Li, Y.; Zhou, Y.-X.; Ma, X.; Jiang, H.-L. Chem. Commun. 2016, 52, 4199.
[4] Wrobleski, A.; Coombs, T. C.; Huh, C. W.; Li, S.-W.; Aubé, J. Org. React. 2012, 78, 1.
[5] (a) Schmidt, K. F. Angew. Chem. 1923, 36, 511.
(b) Schmidt, K. F. Ber. 1924, 57, 704.
[6] Motiwala, H. F.; Fehl, C.; Li, S.-W.; Hirt, E.; Porubsky, P.; Aubé, J. J. Am. Chem. Soc. 2013, 135, 9000.
[7] (a) Insuasty, D.; Robledo, S. M.; Velez, I. D.; Cuervo, P.; Insuasty, B.; Quiroga, J.; Nogueras, M.; Cobo, J.; Abonia, R. Eur. J. Med. Chem. 2017, 141, 567.
(b) Mor, M.; Pahal, P. Pharm. Chem. 2016, 8, 296.
[8] Yu, C.-J.; Li, R.; Gu, P.-M. Tetrahedron Lett. 2016, 57, 3568.
[9] Chen, P.; Sun, C.-H.; Wang, Y.; Xue, Y.; Chen, C.; Shen, M.-H.; Xu, H.-D. Org. Lett. 2018, 20, 1643.
[10] (a) Chan, W.-H.; Somal, G. K.; Katz, C. E.; Pei, H.-X.; Zeng, Y.-B.; Douglas, J. T.; Aube, J. J. Org. Chem. 2009, 74, 7618.
(b) Meyer, A. M.; Katz, C. E.; Li, S.-W.; Velde, D. V.; Aube, J. Org. Lett. 2010, 12, 1244.
[11] Song, X.-R.; Qiu, Y.-F.; Song, B.; Hao, X.-H.; Han, Y.-P.; Gao, P.; Liu, X.-Y.; Liang, Y.-M. J. Org. Chem. 2015, 80, 2263.
[12] Kim, C.; Kang, S.; Rhee, Y.-H. J. Org. Chem. 2014, 79, 11119.
[13] (a) Wang, Y.-F.; Lonca, G. H.; Runigo, M.; Chiba, S. Org. Lett. 2014, 16, 4272.
(b) Mackay, E. G.; Studer, A. Chem.-Eur. J. 2016, 22, 1.
(c) Sun, X.-Y.; Yu, S.-Y. Chem. Commun. 2016, 52, 10898.
(d) Yang, J.-C.; Zhang, J.-J.; Guo, L.-N. Org. Biomol. Chem. 2016, 14, 9806.
[14] (a) Hassner, A.; Ferdinandi, E. S.; Isbister, R. J. J. Am. Chem. Soc. 1970, 92, 1672.
(b) Zhang, F.-L.; Wang, Y.-F.; Lonca, G.-H.; Zhu, X.; Chiba, S. Angew. Chem., Int. Ed. 2014, 53, 4390.
(c) Zhang, F.-L.; Zhu, X.; Chiba, S. Org. Lett. 2015, 17, 3138.
[15] (a) Lu, S.-C.; Gong, Y.-L.; Zhou, D.-M. J. Org. Chem. 2015, 80, 9336.
(b) Kianmehr, E.; Faghih, N.; Karaji, S.; Lomedasht, Y. A.; Khan, K. M. J. Organomet. Chem. 2016, 801, 10.
(c) Yadav, A. K.; Yadav, L. S. Tetrahedron Lett. 2016, 57, 1489.
[16] Zhang, J.; Chen, M.-Y.; Zhu, L. RSC Adv. 2016, 6, 758.
[17] Gaydou, M.; Echavarren, A. M. Angew. Chem., Int. Ed. 2013, 52, 13468, and references cited therein.
[18] Wang, Y.-F.; Toh, K. K.; Lee, J.-Y.; Chiba, S. Angew. Chem., Int. Ed. 2011, 50, 5927, and references cited therein.
[19] (a) Jones, B. Chem. Rev. 1944, 35, 335.
(b) Sun, C.; Zhang, B.; Huang, X.; Yu, J. Chin. J. Org. Chem. 2018, 457 (in Chinese).
(孙超, 姚武冰, 张斌. 黄相韵, 虞姜姜, 有机化学, 2018, 38, 457.)
[20] Yang, S.-D.; Li, B.-J.; Wan, X.-B.; Shi, Z.-J. J. Am. Chem. Soc. 2007, 129, 6066.
[21] Ernest, W.; Barnett, B. F. J. Am. Chem. Soc. 1960, 82, 4671.
[22] Peter, T. W. C.; Zheng, N.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 14560.
[23] H Xi, J.; Dong, Q.-L.; Liu, G.-S.; Wang, S.-Z.; Chen, L.; Yao, Z.-J. Synlett 2010, 1674.
[24] Fuson, R. C.; Talbom, R. L. J. Org. Chem. 1961, 26, 2674.
[25] Antonchick, A. P.; Samanta, R.; Kulikov, K.; Lategahn, J. Angew. Chem., Int. Ed. 2011, 50, 8605.
[26] Tsukamoto, H.; Suzuki, R.; Kondo, Y. J. Comb. Chem. 2006, 8, 289.
[27] Cho, G.-Y.; Remy, P.; Jansson, J.; Moessner, C.; Bolm, C. Org. Lett. 2004, 6, 3293.
[28] Fors, B. P.; Dooleweerdt, K.; Zeng, Q.-L.; Buchwald, S. L. Tetrahedron 2009, 65, 6576.
[29] Bedford, R. B.; Haddow, M. F.; Mitchell, C. J.; Webster, R. L. Angew. Chem., Int. Ed. 2011, 50, 5524.
[30] Chen, C.-T.; Kuo, J.-H.; Pawar, V. D.; Munot, Y. S.; Weng, S.-S.; Ku, C.-H.; Liu, C.-Y. J. Org. Chem. 2005, 70, 1188.
[31] Epishina, M. A.; Kuliov, A. S.; Ignatev, N. V.; Schuite, M.; Makhova, N. N. Mendeleev Commun. 2010, 20, 335.
[32] Taylor, E. J.; Jones, M. D.; Williams, J. M. J.; Bull, S. D. J. Org. Chem. 2012, 77, 2808.
[33] Huang X.-H.; Anderson, K. W.; Zim D.; Jiang, L.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 6653.
[34] Kajihara, K.; Arisawa, M.; Shuto, S. J. Org. Chem. 2008, 73, 9494.
[35] Cam-Van, N. T.; Diep, B. K.; Buu-Hoi, N. P. Tetrahedron 1964, 20, 2195.
[36] Antonow, D.; Marrafa, T.; Dawood, I.; Ahmed, T.; Haque, M. R.; Thurston, D. E.; Zinzalla, G. Chem. Commun. 2010, 46, 2289.
[37] Sykulski, J. Acta Pol. Pharm. 1963, 20, 131.
[38] Liu, H.; Wang, X.-M.; Gu, Y.-H.; Org. Biomol. Chem. 2011, 9, 1614.

Outlines

/