Articles

Synthesis and Evaluation of Antitumor Activity of Sorafenib Derivatives Possessing Diphenylamine and Thiourea Structures

  • Guan Daokun ,
  • Sun Shaofeng ,
  • Chen Jing ,
  • He Zuopeng ,
  • Kong Xiangkai ,
  • Wang Ningning ,
  • Yao Jianwen ,
  • Wang Hongbo
Expand
  • Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai 264005

Received date: 2018-02-02

  Revised date: 2018-03-22

  Online published: 2018-04-13

Supported by

Project supported by the National Natural Science Foundation of China (No. 81728020), the Key Research Project of Shandong Province (No. 2017GSF18177), and the Key Technology Development Plan of Yantai City (No. 2017ZH075).

Abstract

17 novel sorafenib derivatives possessing diphenylamine and thiourea structures were designed and synthesized using 2-picolinic acid and substituted anilines as raw materials. The structures of the target compounds were all characterized by NMR and HRMS. In addition, the in vitro antiproliferation activity of the target compounds was studied in human colon cancer cell HCT116, human breast cancer cell line MDA-MB-231, human prostate cancer cell line PC-3 and mouse melanoma cell line B16BL6. The results showed that 1-(4-chloro-3-trifluoromethylphenyl)-3-(4-(2-(isopropylcarbamoyl)pyridine-4-amino)phenyl)thiourea (9g) had better inhibitory activity against four cell lines than the positive drug sorafenib, and 1-(3-trifluoromethyl-4-chlorophenyl)-3-{4-[2-(methylcarbamoyl)pyridine-4-amino]phenyl}thiourea (9b) and 1-(3-trifluoro-methyl-4-fluorophenyl)-3-{4-[2-(isopropylcarbamoyl)pyridine-4-amino]phenyl}thiourea (9j) had better inhibitory activity against MDA-MB-231, PC-3 and B16BL6 cell lines. The molecular docking of the active small molecule 9j was further studied, and its binding mode with the active site of the 3-D crystal structure (5HI2) of B-Raf receptor was discussed, which provided a useful reference for the design and synthesis of novel sorafenib derivatives in the future.

Cite this article

Guan Daokun , Sun Shaofeng , Chen Jing , He Zuopeng , Kong Xiangkai , Wang Ningning , Yao Jianwen , Wang Hongbo . Synthesis and Evaluation of Antitumor Activity of Sorafenib Derivatives Possessing Diphenylamine and Thiourea Structures[J]. Chinese Journal of Organic Chemistry, 2018 , 38(6) : 1414 -1421 . DOI: 10.6023/cjoc201802005

References

[1] Robert, R. J. Biochem. Biophys. Res. Commun. 2010, 399, 313.
[2] Rawan, A.; Rachel, H.; Sophia, E.; Elia, S.; Jacob, B. Oncotarget 2016, 7, 18694.
[3] Huang, T. G.; Michael, K.; Zhuge, J.; Zhong, M. H.; Liu, D. L. J. Hematol. Oncol. 2013, 6, 30.
[4] Yang, Y. S.; Zhang, F.; Tang, D. J.; Yang, Y. H.; Zhu, H. L. Plos One 2014, 9, 1.
[5] Wagle, N.; Van Allen, E. M.; Treacy, D. J.; Frederick, D. T.; Cooper, Z. A.; Taylor-Weiner, A.; Rosenberg, M.; Goetz, E. M.; Sullivan, R. J.; Farlow, D. N.; Friedrich, D. C.; Anderka, K.; Perrin, D.; Johannessen, C. M.; McKenna, A.; Cibulskis, K.; Kryukov, G.; Hodis, E.; Lawrence, D. P.; Fisher, S.; Getz, G.; Gabriel, S. B.; Carter, S. L.; Flaherty, K. T.; Wargo, J. A.; Garraway, L. A. Cancer Discovery 2014, 4, 61.
[6] Rauch, J.; O'Neill, E.; Mack, B.; Matthias, C.; Munz, M.; Kolch, W.; Gires, O. Cancer Res. 2010, 70, 1679.
[7] Shi, H.; Moriceau, G.; Kong, X.; Lee, M. K.; Lee, H.; Koya, R. C.; Ng, C.; Chodon, T.; Scolyer, R. A.; Dahlman, K. B.; Sosman, J. A.; Kefford, R. F.; Long, G. V.; Nelson, S. F.; Ribas, A.; Lo, R. S. Nat Commun. 2012, 3, 724.
[8] Vasbinder, M. M.; Aquila, B.; Augustin, M.; Chen, H.; Cheung, T.; Cook, D.; Drew, L.; Fauber, B. P.; Glossop, S.; Grondine, M.; Hennessy, E.; Johannes, J.; Lee, S.; Lyne, P.; Mortl, M.; Omer, C.; Palakurthi, S.; Pontz, T.; Read, J.; Sha, L.; Shen, M.; Steinbacher, S.; Wang, H.; Wu, A.; Ye, M. J. Med. Chem. 2013, 56, 1996.
[9] Tang, J.; Hamajima, T.; Nakano, M.; Sato, H.; Dickerson, S. H.; Lackey, K. E. Bioorg. Med. Chem.Lett. 2008, 18, 4610.
[10] Wilhelm, S. M.; Adnane, L.; Newell, P.; Villanueva, A.; Llovet, J. M.; Lynch, M. Mol. Cancer Ther. 2008, 7, 3129.
[11] Ambrosini, G.; Cheema, H. S.; Seelman, S.; Teed, A.; Sambol, E. B.; Singer, S.; Schwartz, G. K. Mol. Cancer Ther. 2008, 7, 890.
[12] Hong, D. S.; Cabanillas, M. E.; Wheler, J.; Naing, A.; Tsimberidou, A. M.; Ye, L.; Waguespack, S. G.; Hernandez, M.; El Naggar, A. K.; Bidyasar, S.; Wright, J.; Sherman, S. I.; Kurzrock, R. J. Clin. Endocrinol. Metab. 2011, 96, 997.
[13] Adnane, L.; Trail, P. A.; Taylor, I.; Wilhelm, S. M. Method Enzymol. 2006, 407, 597.
[14] Jean, G. W.; Mani, R. M.; Jaffry, A.; Khan, S. A. Clin. Rev. Educ. 2016, 2, 529.
[15] Gedaly, R.; Angulo, P.; Hundley, J.; Daily, M. F.; Chen, C.; Koch, A.; Evers, B. M. Anticancer Res. 2010, 30, 4951.
[16] Richetta, A. G.; Maiani, E.; Carboni, V.; Carlomagno, V.; Cimillo, M.; Mattozzi, C.; Calvieri, S. Eur. J. Dermatol. 2012, 55, 1082.
[17] Justin D.; Vijay G.; Wang X. D.; Laurence H. H.; Gary A. F. Bioorg. Med. Chem. 2010, 18, 292.
[18] Yao, J.; Chen, J.; He, Z.; Sun, W.; Xu, W. Bioorg. Med. Chem. 2012, 20, 2923.
[19] Kong, X.; Yao, Z.; He, Z.; Xu, W.; Yao, J. MedChemComm 2015, 6, 867.
[20] Scott, A. F.; Daniel, M. W.; Aysxegül, O.; Matthew, J. W. C. K.; Yin, J. P.; Ivana, Y.; Gabriele, S.; John, D. M.; Juliann, C.; Philip, J. S.; Lee, A. A.; Yan, J. B.; Kyung, S.; Georgia, H.; Charles, E.; Christine, Y.; Andrey, S. S.; Gerard, M.; Nicholas, J. S.; Sarah, G. H.; Shiva, M. Cancer Cell 2016, 29, 477.
[21] Harry, S. M.; Melvin, L. Heterocycl. Basic Comd. 1954, 20, 285.
[22] Wei, L.; Xin, Z.; Lu, D.; Limin, S.; Chen, X. M.; Ping, G.; Sun, T. M. Molecules 2011, 16, 5134.

Outlines

/