Chinese Journal of Organic Chemistry >
Synthesis of Titanium Heteroarylphosphinimine Complexes and Application for Ethylene Polymerization
Received date: 2018-03-23
Revised date: 2018-04-25
Online published: 2018-05-03
Supported by
Project supported by the Technology Development Project of China Petroleum & Chemical Corporation (Sinopec) (No. 214002).
Mono-and bisdiphenyl substituted heteroarylphosphines R-PPh2[R=2-pyridyl (3a), 2-thienyl (3b) and 2-furyl (3c)] and Ph2P-R'-PPh2[R'=2,6-pyridyl (6a), 2,5-thienyl (6b) and 2,5-furyl (6c)] were synthesized. After Staudinger reaction with Me3SiN3, those heteroarylphosphines were converted into the heteroarylphosphinimine ligands, R-PPh2(NSiMe3) and (Me3SiN)Ph2P-R"-PPh2(NSiMe3). The subsequently dehalosilylation reaction with CpTiCl3 afforded the corresponding Ti heteroarylphosphinimine halfmetallocenes as olefin polymerization catalysts. The structures of all the complexes were determined by means of 1H NMR, 13C NMR and 31P NMR spectroscopic methods and further confirmed by single-crystal X-ray diffraction analysis. When activated with methylaluminoxane (MAO) at a ratio of Al/Ti=600 and under 0.5 MPa of ethylene, these bimetallic Ti phosphinimine complexes displayed a higher catalytic activity compared to the monometallic analogues, but resulted in polymers with bimodal molecular weight distributions. Unexpectedly, 6b produced ultrahigh Mw polyethylene at lower polymerization temperature.
Wang Tieshi , Chen Jianjun , Ye Lin , Zhang Aiying , Feng Zengguo . Synthesis of Titanium Heteroarylphosphinimine Complexes and Application for Ethylene Polymerization[J]. Chinese Journal of Organic Chemistry, 2018 , 38(8) : 2151 -2160 . DOI: 10.6023/cjoc201803035
[1] (a) Gan, W.; Nie, W. L.; Chen, Y. F. Chin. J. Org. Chem. 2009, 29, 1200(in Chinese). (甘伟, 聂万丽, 陈耀峰, 有机化学, 2009, 29, 1200.)
(b) Xu, S. S.; Wang, B. Q.; Yuan, F.; He, S. S.; Zhou, X. Z.; Zou, F. L.; Li, Y. Chin. J. Org. Chem. 2003, 23, 187(in Chinese). (徐善生, 王佰全, 袁方, 贺双胜, 周秀中, 邹丰楼, 李杨, 有机化学, 2003, 23, 187.)
(c) Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. Chem. Rev. 2000, 100, 1253.
(d) Hessen, B. J. Catal. 2004, 213, 129.
[2] (a) Kang, X. H.; Zhou, G. L.; Wang, X. B.; Qu, J. P.; Hou, Z. M.; Luo, Y. Organometallics 2016, 35, 913.
(b) Valente, A.; Mortreux, A.; Visseaux, M.; Zinck, P. Chem. Rev. 2013, 113, 3836.
(c) Resconi, L.; Balboni, D.; Baruzzi, G.; Fiori, C.; Guidotti, S. Organometallics 2000, 19, 420.
(d) Talja, M.; Polamo, M.; Leskela, M. J. Catal. 2008, 280, 102.
[3] (a) Nikitin, S. V.; Nikitin, V. V.; Oleynik, I. I.; Oleynik, I. V.; Bagryanskaya, E. G. J. Catal. 2016, 423, 285.
(b) Srijumnong, S.; Suttipitakwong, P.; Jongsomjit, B.; Praserthdam, P. J. Catal. 2008, 294, 1.
(c) Wang, Y. X.; Zuo, M. H.; Li, Y. S. Chin. J. Catal. 2015, 36, 657.
(d) Yan, Q.; Yang, W. H.; Chen, L. Q.; Wang, L.; Redshaw, C.; Sun, W. H. J. Organomet. Chem. 2014, 753, 34.
(e) Nomura, K.; Pengoubol, S.; Apisuk, W. RSC Adv. 2016, 6, 16203.
[4] (a) Hu, W. Q.; Sun, X. L.; Wang, C.; Gao, Y.; Tang, Y.; Shi, L. P.; Xia, W.; Sun, J.; Dai, H. L.; Li, X. Q.; Yao, X. L.; Wang, X. R. Organometallics 2004, 23, 1684.
(b) Qi, C. H.; Zhang, S. B. Appl. Organomet. Chem. 2006, 20, 70.
(c) Liu, K.; Wu, Q.; Gao, W.; Mu Y.; Ye, L. Eur. J. Inorg. Chem. 2011, 12, 1901.
(d) Nomura, K.; Liu, J. Dalton Trans. 2011, 7666.
[5] (a) Liu, Q. Y.; Gao, R.; Hou, J. X.; Sun, W. H. Chin. J. Org. Chem. 2013, 33, 808(in Chinese). (刘清云, 高榕, 侯俊先, 孙文华, 有机化学, 2013, 33, 808.)
(b) Yan, Q.; Yang, W. H.; Chen, L. Q.; Wang, L.; Redshaw, C.; Sun, W. H. J. Organomet. Chem. 2014, 753, 34.
(c) Su, B. Y.; Jia, P. Y.; Wang, Y. Z.; Li, Y. N.; Huang, H.; Li, Q. D. Chin. J. Org. Chem. 2016, 36, 2344(in Chinese). (苏碧云, 郏佩瑜, 王彦昭, 李亚宁, 黄鹤, 李谦定, 有机化学, 2016, 36, 2344.)
(d) Stephan, D. W.; Stewart, J. C.; Guérin, F.; Spence, R. E. v. H.; Xu, W.; Harrison, D. G. Organometallics 1999, 18, 1116.
[6] (a) Stephan, D. W. Organometallics 2005, 24, 2548.
(b) Dehnicke, K.; Krieger, M.; Massa, W. Coord. Chem. Rev. 1999, 182, 19.
(c) Chen, J. J.; Wang, T. S.; Tang, Z. W.; Xu, Y. B.; Xu, l.; Cao, M. S.; Feng, Z, G. Acta Polym. Sin. 2017, (8), 1294(in Chinese). (陈建军, 王铁石, 唐正伟, 徐一兵, 徐林, 曹茂盛, 冯增国, 高分子学报, 2017, (8), 1294.)
[7] (a) Hollink, E.; Stewart, J. C.; Wei, P. R.; Stephan, D. W. Can. J. Chem. 2004, 82, 1304.
(b) Siemeling, U.; Kölling, L.; Stammler, A.; Stammler, H-G. J. Chem. Soc., Dalton Trans. 2002, 3277.
(c) Sarsfield, M. J.; Said, M.; Thornton-Pett, M.; Gerrard, L. A.; Bochmann, M. J. Chem. Soc., Dalton Trans. 2001, 822.
(c) Wang, T. S.; Chen, J. J.; Ye, L.; Zhang, A. Y.; Feng, Z, G. Chin. J. Org. Chem. 2018, 38, 1544(in Chinese). (王铁石, 陈建军, 叶霖, 张爱英, 冯增国, 有机化学, 2018, 38, 1544.)
[8] (a) Xu, S.; Feng, Z. F.; Huang, J. L. J. Catal. 2006, 250, 35.
(b) Resconi, L.; Balboni, D.; Baruzzi, G.; Fiori, C.; Guidotti, S. Organometallics 2000, 19, 420.
(c) Zhang, Q.; Tao, X.; Gao, W.; Song, T. T.; Mu, Y. J. Org. Chem. 2016, 804, 18.
[9] (a) Xu, S.; Liang, C. C.; Lv, Z. W.; Zhu, Y. L.; Zhang, C.; Mi, P. K. Chin. J. Org. Chem. 2017, 37, 1284(in Chinese). (许胜, 梁春超, 吕中文, 朱玉玲, 张翠, 米普科, 有机化学, 2017, 37, 1284.)
(b) Ewen, J. A.; Elder, M. J.; Jones, R. L.; Rheingold, A. L.; Liable-Sands, L. M.; Sommer, R. D. J. Am. Chem. Soc. 2001, 123, 4763.
(c) Yamazaki, H.; Kimura, K.; Nakano, M.; Ushioda, T. Chem. Lett. 1999, 1311.
(d) Williams, L. A.; Marks, T. J. Organometallics 2009, 28, 2053.
[10] (a) Li, H.; Stern, C. L.; Marks, T. J. Macromolecules 2005, 38, 9015.
(b) Haak, R. M.; Wezenberg, S. J.; Kleij, A. W. Chem. Commun. 2010, 46, 2713.
(c) Delferro, M.; Marks, T. J. Chem. Rev. 2011, 111, 2450.
(d) Li, H.; Marks, T. J. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15295.
(e) Liu, S.; Motta, A.; Delferro, M.; Marks, T. J. J. Am. Chem. Soc. 2013, 135, 8830.
[11] McInnis, J. P.; Delferro, M.; Marks, T. J. Acc. Chem. Res. 2014, 47, 2545.
[12] (a) Guo, N.; Li, L. T.; Marks, T. J. J. Am. Chem. Soc. 2004, 126, 6542.
(b) Li, H.; Li, L.; Marks, T. J.; Liable-Sands, L.; Rheingold, A. L. J. Am. Chem. Soc. 2003, 125, 10788.
(c) Motta, A.; Fragala, I. L.; Marks, T. J. J. Am. Chem. Soc. 2009, 131, 3974.
(d) Li, H.; Li, L.; Marks, T. J. Angew. Chem., Int. Ed. 2004, 43, 4937.
(e) Li, L.; Metz, M. V.; Li, H.; Chen, M.-C.; Marks, T. J.; Lia-ble-Sands, L.; Rheingold, A. L. J. Am. Chem. Soc. 2002, 124, 12725.
[13] (a) Chahma, M.; Myles, D. J. T.; Hicks, R. G. Can. J. Chem. 2005, 83, 150.
(b) Stott, T. L.; Wolf, M. O. J. Phys. Chem. B 2004, 108, 18815.
(c) Reiter, S. A.; Nogai, S. D.; Schmidbaur, H. Dalton Trans. 2005, 247.
(d) Sevcik, R.; Necas, M.; Novosad, Polyhedron 2003, 22, 1585.
[14] Latham, I. A.; Leigh, G. J. J. Chem. Soc., Dalton Trans. 1986, 377.
[15] Stephan, D. W.; Stewart, J. C.; Guérin, F.; Courtenay, S.; Kickham, J. E.; Hollink, E.; Beddie, C.; Hoskin, A. J.; Graham, T.; Wei, P.; Spence, R. E. v. H.; Xu, W.; Koch, L.; Gao, X.; Harrison, D. G. Organometallics 2003, 22, 1937.
[16] (a) Resconi, L.; Cavallo, L.; Fait, A.; Piemontesi, F. Chem. Rev. 2000, 100, 1253.
(b) Jin, Y. L.; Zhao, N.; Cheng, R. H.; Liu, B. P. CIESC J. 2017, 68, 485(in Chinese). (金玉龙, 赵柠, 程瑞华, 刘柏平, 化工学报, 2017, 68, 485.)
[17] Chen J. X.; Huang Y. B.; Li Z. S.; Zhang Z. C.; Wei C. X.; Lan T. Y.; Zhang W. J. J. Mol. Catal. A:Chem. 2006, 259, 133.
[18] Xiao X. H.; Sun J. Q.; Li X.; Wang Y. G.; Schumann H. Eur. Polym. J. 2007, 43, 164.
/
〈 |
|
〉 |