Chinese Journal of Organic Chemistry >
Recent Progress on the Synthesis of Phenols through C-H Hydroxylation of Aromatics
Received date: 2018-03-15
Revised date: 2018-04-23
Online published: 2018-05-03
Supported by
Project supported by the research Funds of Ningbo University (No. ZX2016000748) and the K. C. Wong Magna Fund in Ningbo University.
Phenols are important central motifs that are abundant in many natural products, pharmaceuticals and agrochemicals. Moreover, the high reactivity of phenol derivatives makes them versatile building blocks for organic synthesis. Over the past decade, the synthesis of phenol derivatives via C-H hydroxylation of aromatics has received much attention due to its potential as an atom efficient methodology. Herein, the research advances on the C-H hydroxylation of aromatics are reviewed categorized by the types of hydroxylation source used. Detailed substrate scopes and reaction mechanisms will be discussed, as well as the limitations of current procedures and the prospects for the future.
Key words: transition-metal catalysis; C-H activation; hydroxylation; phenols
Qian Shaoping , Ma Yaorui , Gao Shanshan , Luo Junfei . Recent Progress on the Synthesis of Phenols through C-H Hydroxylation of Aromatics[J]. Chinese Journal of Organic Chemistry, 2018 , 38(8) : 1930 -1939 . DOI: 10.6023/cjoc201803022
[1] (a) Tyman, J. H. P. Synthetic and Natural Phenols, Elsevier, Netherlands, 1996.
(b) Luo, J.; Preciado, S.; Larrosa, I. J. Am. Chem. Soc. 2014, 136, 4109.
(c) Cui, N.; Zhao, Y.; Wang, Y. Chin. J. Org. Chem. 2017, 37, 20(in Chinese). (崔娜, 赵宇, 王云侠, 有机化学, 2017, 37, 20.)
[2] Ma, L.; Cai, Y.; Yang. L.; Liu, Z. Chin. J. Org. Chem. 2001, 21, 518(in Chinese). (马兰萍, 蔡育军, 杨立, 刘中立, 有机化学, 2001, 21, 518.)
[3] Liu, X; Zhang, H.; Jiang, Y. Chin. J. Org. Chem. 2012, 32, 1434(in Chinese). (刘向前, 张慧, 蒋咏文, 有机化学, 2012, 32, 1434.)
[4] Mo, F.; Trzepkowski, L. J.; Dong, G. Angew. Chem. Int. Ed. 2012, 51, 13075.
[5] Choy, P. Y.; Kwong, F. Y. Org. Lett. 2013, 15, 270.
[6] Shan, G.; Yang, X.; Ma, L.; Rao, Y. Angew. Chem. Int. Ed. 2012, 51, 13070.
[7] Rao, Y. Synlett. 2013, 24, 2472.
[8] Rastogi, S. K.; Medellin, D. C.; Kornienko, A. Org. Biomol. Chem. 2014, 12, 410.
[9] Batchu, H.; Bhattacharyya, S.; Kant, R.; Batra, S J. Org. Chem. 2015, 80, 7360.
[10] Guo, Y.; Yu, K.-K.; Xing, L.-H.; Liu, H.-W.; Wang, W.; Ji, Y.-F. Adv. Synth. Catal. 2017, 359, 410.
[11] Jeong, E. J.; Jo, Y. H; Jang, M. J.; Youn, S. W. Bull. Korean Chem. Soc. 2015, 36, 453.
[12] Zhang, H.-Y.; Yi, H.-M.; Wang, G.-W.; Yang, B.; Yang, S.-D. Org. Lett. 2013, 15, 6186.
[13] Nguyen, T. H. L.; Gigant, N.; Delarue-Cochin, S.; Joseph, D. J. Org. Chem. 2016, 81, 1850.
[14] Chen, X.-Y.; Ozturk, S.; Sorensen, E. J. Org. Lett. 2017, 19, 6280.
[15] Yang, Y.; Lin, Y.; Rao, Y. Org. Lett. 2012, 14, 2874.
[16] Yang, X.; Sun, Y.; Chen, Z.; Rao, Y. Adv. Synth. Catal. 2014, 356, 1625.
[17] Sun, Y.-H.; Sun, T.-Y.; Wu, Y.-D.; Zhang, X.; Rao, Y. Chem. Sci. 2016, 7, 2229.
[18] Kim, K.; Choe, H.; Jeong, Y.; Lee, J. H.; Hong, S. Org. Lett. 2015, 17, 2550.
[19] Banerjee, A.; Bera, A.; Guin, S.;. Rout, S. K.; Patel, B. K Tetrahedron. 2013, 69, 2175.
[20] Li, X.; Liu, Y.-H.; Gu, W.-J.; Li, B.; Chen, F.-J.; Shi, B.-F. Org. Lett. 2014, 16, 3904.
[21] Wang, M.; Hu, Y.; Jiang, Z.; Shenb, H. C.; Sun, X. Org. Biomol. Chem. 2016, 14, 4239.
[22] Singh, B. K.; Jana, R. J. Org. Chem. 2016, 81, 831.
[23] Sun, S.-Z.; Shang, M; Wang, H.-L.; Lin, H.-X.; Dai, H.-X.; Yu, J.-Q. J. Org. Chem. 2015, 80, 8843.
[24] Wu, Y.; Zhou, B. Org. Lett. 2017, 19, 3532.
[25] Kim, S. H.; Lee, H. S.; Kim, S. H.; Kim, J. N. Tetrahedron. Lett. 2008, 49, 5863.
[26] Kamal, A.; Srinivasulu, V.; Sathish, M.; Tangella, Y.; Nayak, V. L.; Rao, M. P. N.; Shankaraiah, N.; Nagesh, N. Asian J. Org. Chem. 2014, 3, 68.
[27] Liang, Y.-F.; Wang, X.; Yuan, Y.; Liang, Y.; Li, X.; Jiao, N. ACS Catal. 2015.
[28] Zhu, W. M.; Ying, W. W.; Wei, W. T. Chin. J. Org. Chem. 2017, 37, 2841(in Chinese). (朱文明, 应炜炜, 魏文廷, 有机化学, 2017, 37, 2841.)
[29] Dong, J.; Liu, P.; Sun, P. J. Org. Chem. 2015, 80, 2925.
[30] Duan, S.; Xu, Y.; Zhang, X.; Fan, X. Chem. Commun. 2016, 52, 10529
[31] Yamaguchi, T.; Yamaguchi, E.; Tada, N.; Itoh, A. Adv. Synth. Catal. 2015, 357, 2017.
[32] Chena, C.-D.; Shenga, W.-B.; Shia, G.-J.; Guo, C.-C. J. Phys. Org. Chem. 2013, 26, 23.
[33] Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 14654.
[34] Yan, Y. P.; Feng, P.; Zheng, Q. Z.; Liang, Y. F.; Lu, J. F.; Cui, Y. X.; Jiao. N. Angew. Chem., Int. Ed. 2013, 52, 5827.
[35] Chen, C.-Y.; He, F.; Tang, G.; Ding, H.; Wang, Z.; Li, D.; Deng, L.; Faessler, R. Eur. J. Org. Chem. 2017, 6604.
[36] Kim, K.; Hyun, J.; Kim, J.; Kim, H Asian J. Org. Chem. 2017, 6, 907.
[37] Zhang, H; Zhao, L.; Wang, D.-X.; Wang, M.-X. Org. Lett. 2013, 15, 3836.
[38] Seth, K.; Nautiyal, M.; Purohit, P.; Parikh, N.; Chakraborti, A. K. Chem. Commun. 2015, 51, 191.
/
〈 |
|
〉 |