Reviews

Recent Progress of N-Doped Carbon Materials Supported Pd Nanocatalysts in Organic Reactions

  • Li Xiaowei ,
  • Xu Haifen ,
  • Zhou Jin ,
  • Yan Ge ,
  • Zhang Lei ,
  • Zhuo Shuping
Expand
  • a School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000;
    b State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023;
    c School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001

Received date: 2018-03-15

  Revised date: 2018-04-23

  Online published: 2018-05-03

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 51502162, 21501002, 21576159), the Open Foundation of State Key Laboratory of Coordination Chemistry of Nanjing University (Nos. SKLCC1613, SKLCC1604), the Open Fund of Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, the Chinese Academy of Sciences (No. PCOM201704), the National Students' Innovation Training Program (No. 201710433179) and the Young Teacher Supporting Fund of Shandong University of Technology.

Abstract

The N-doped carbon materials supported Pd nanocatalysts have attracted extensive attention in the catalysis field due to its unique advantages such as high efficiency, easy separation, purification and recyclability. The recent progress in the synthesis and application of supported Pd nanocatalysts based on different types of carbon materials supports including N-doped porous/mesoporous carbon, N-doped graphene, N-doped carbon nanotube and N-doped carbon nanosheet is reviewed. And the research trends of N-doped carbon materials supported Pd nanocatalysts are also prospected.

Cite this article

Li Xiaowei , Xu Haifen , Zhou Jin , Yan Ge , Zhang Lei , Zhuo Shuping . Recent Progress of N-Doped Carbon Materials Supported Pd Nanocatalysts in Organic Reactions[J]. Chinese Journal of Organic Chemistry, 2018 , 38(8) : 1917 -1929 . DOI: 10.6023/cjoc201803021

References

[1] Ghosh, R.; Adarsh, N. N.; Sarkar, A. J. Org. Chem. 2010, 75, 5320.
[2] Chung, K. H.; So, C. M.; Wong, S. M.; Luk, C. H.; Zhou, Z. Y.; Lau, C. P.; Kwong, F. Y. Chem. Commun. 2012, 48, 1967.
[3] Micksh, M.; Tenne, M.; Strassner, T. Organometallics 2014, 33, 3966.
[4] Díez-González, S.; Marion, N.; Nolan, S. P. Chem. Rev. 2009, 109, 3612.
[5] Valente, C.; Çalimsiz, S.; Hoi, K. H.; Mallik, D.; Sayah, M.; Organ, M. G. Angew. Chem., Int. Ed. 2012, 51, 3314.
[6] Li, X. W.; Chen, F.; Xu, W. F.; Li, Y. Z.; Chen, X. T.; Xue, Z. L. Inorg. Chem. Commun. 2011, 14, 1673.
[7] Li, X. W.; Zhou, J.; Zhuo, S. P. Chin. J. Org. Chem. 2014, 34, 2063(in Chinese). (李晓微, 周晋, 禚淑萍, 有机化学, 2014, 34, 2063.)
[8] Nelson, D. J. Eur. J. Inorg. Chem. 2015, 2012.
[9] (a) Fihri, A.; Bouhrara, M.; Nekoueishahraki, B.; Basset, J. M.; Polshettiwar, V. Chem. Soc. Rev. 2011, 40, 5181.
(b) Feng, C. L.; Hei, L. Y.; Li, Z.; Liu, L. T. Chin. J. Org. Chem. 2016, 36, 179(in Chinese). (冯翠兰, 黑莉楹, 李珍, 刘澜涛, 有机化学, 2016, 36, 179.)
(c) Kong, S. N.; Malik, A. U.; Qian, X. F.; Shu, M. H.; Xiao, W. D. Chin. J. Org. Chem. 2018, 38, 432(in Chinese). (孔胜男, Abaid Ullah Malik, 钱雪峰, 舒谋海, 肖文德, 有机化学, 2018, 38, 432.)
[10] Guerra, J.; Herrero, M. A. Nanoscale 2010, 2, 1390.
[11] Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Chem. Rev. 2015, 115, 4744.
[12] Lee, B. J.; Kim, J.; Hyeon, T. Adv. Mater. 2006, 18, 2073.
[13] Scheuermann, G. M.; Rumi, L.; Steurer, P.; Bannwarth, W.; Mülhaupt, R. J. Am. Chem. Soc. 2009, 131, 8262.
[14] Georgakilas, V.; Tiwari, J. N.; Kemp, K. C.; Perman, J. A.; Bourlinos, A. B.; Kim, K. S.; Zboril, R. Chem. Rev. 2016, 116, 5464.
[15] Zhang, L.; Gao, S. T.; Liu, W. H.; Tang, R. X.; Shang, N. Z.; Wang, C.; Wang, Z. Chin. J. Org. Chem. 2014, 34, 1542(in Chinese). (张丽, 高书涛, 刘伟华, 唐然肖, 商宁昭, 王春, 王志, 有机化学, 2014, 34, 1542.)
[16] Pikna, L.; Milkovic, O.; Saksl, K.; Hezelová, M.; Smrcová, M.; Puliš, P.; Michalik, Š.; Gamcová, J. J. Solid State Chem. 2014, 212, 197.
[17] Pérez-Mayoral, E.; Calvino-Casildaa, V.; Soriano, E. Catal. Sci. Technol. 2016, 6, 1265.
[18] Cao, Y. L.; Mao, S. J.; Li, M. M.; Chen, Y. Q.; Wang, Y. ACS Catal. 2017, 7, 8090.
[19] Zhou, J.; Li, Z. H.; Xing, W.; Zhu, T. T.; Shen, H. L.; Zhuo, S. P. Chem. Commun. 2015, 51, 4591.
[20] Li, M. M.; Xu, F.; Li, H. R.; Wang, Y. Catal. Sci. Technol. 2016, 6, 3670.
[21] Li, X. H.; Antonietti, M. Chem. Soc. Rev. 2013, 42, 6593.
[22] He, L.; Weniger, F.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2016, 55, 12582.
[23] Li, Z. L.; Liu, J. H.; Huang, Z. W.; Yang, Y.; Xia, C. G.; Li, F. W. ACS Catal. 2013, 3, 839.
[24] Li, Z. L.; Liu, J. H.; Xia, C. G.; Li, F. W. ACS Catal. 2013, 3, 2440.
[25] Ding, S. S.; Zhang, C. H.; Liu, Y. F.; Jiang, H.; Chen, R. Z. Appl. Surf. Sci. 2017, 425, 484.
[26] Ding, S. S.; Zhang, C. H.; Liu, Y. F.; Jiang, H.; Chen, R. Z. J. Ind. Eng. Chem. 2017, 46, 258.
[27] Hu, S.; Zhang, X.; Qu, Z. Y.; Jiang, H.; Liu, Y. F.; Huang, J.; Xing, W. H.; Chen, R. Z. J. Ind. Eng. Chem. 2017, 53, 333.
[28] Xu, X.; Tang, M. H.; Li, M. M.; Li, H. R.; Wang, Y. ACS Catal. 2014, 4, 3132.
[29] Tang, M. H.; Mao, S. J.; Li, M. M.; Wei, Z. Z.; Xu, F.; Li, H. R.; Wang, Y. ACS Catal. 2015, 5, 3100.
[30] Jiang, H. Z.; Yu, X. L.; Nie, R. F.; Lu, X. H.; Zhou, D.; Xia, Q. H. Appl. Catal., A:Gen. 2016, 520, 73.
[31] Dong, Z. P.; Dong, C. X.; Liu, Y. S.; Le, X. D.; Jin, Z. C.; Ma, J. T. Chem. Eng. J. 2015, 270, 215.
[32] Zhang, L.; Feng, C.; Gao, S. T.; Wang, Z.; Wang, C. Catal. Commun. 2015, 61, 21.
[33] Zhang, L.; Dong, W. H.; Shang, N. Z.; Feng, C.; Gao, S. T.; Wang, C. Chin. Chem. Lett. 2016, 27, 149.
[34] Zeng, M. F.; Wang, Y. D.; Liu, Q.; Yuan, X.; Feng, R. K.; Yang, Z.; Qi, C. Z. Int. J. Biol. Macromol. 2016, 89, 449.
[35] Wu, X. X.; Zhou, H. New J. Chem. 2017, 41, 10245.
[36] Long, Y.; Liu, Y. S.; Zhao, Z. M.; Luo, S.; Wu, W.; Wu, L.; Wen, H.; Wang, R. Q.; Ma, J. T. J. Colloid Interface Sci. 2017, 496, 465.
[37] Wei, Z. Z.; Gong, Y. T.; Xiong, T. Y.; Zhang, P. F.; Li, H. R.; Wang, Y. Catal. Sci. Technol. 2015, 5, 397.
[38] Deng, D. S.; Han, G. Q.; Zhu, X.; Xu, X.; Gong, Y. T.; Wang, Y. Chin. Chem. Lett. 2015, 26, 277.
[39] Ziccarelli, I.; Neumann, H.; Kreyenschulte, C.; Gabriele, B.; Beller, M. Chem. Commun. 2016, 52, 12729.
[40] Zhang, P. F.; Gong, Y. T.; Li, H. R.; Chen, Z. R.; Wang, Y. Nat. Commun. 2013, 4, 1593.
[41] Ravat, V.; Nongwe, I.; Coville, N. J. Microporous Mesoporous Mater. 2016, 225, 224.
[42] Jukka, K.; Kongia, N.; Matisenb, L.; Tanja Kallioc, T.; Kontturi, K.; Tammeveski, K. Electrochim. Acta 2014, 137, 206.
[43] Wu, X. T.; Li, J. C.; Pan, Q. R.; Li, N.; Liu, Z. Q. Dalton Trans. 2018, 47, 1442.
[44] Wu, P.; Huang, Y. Y.; Zhou, L. Q.; Wang, Y. B.; Bu, Y. K.; Yao, J. N. Electrochim. Acta 2015, 152, 68.
[45] Liu, Q.; Lin, Y.; Fan, J. C.; Lv, D.; Min, Y. L.; Wu, T.; Xu, Q. J. Electrochem. Commun. 2016, 73, 75.
[46] Kiyani, R.; Rowshanzamir, S.; Parnian, M. J. Energy 2016, 113, 1162.
[47] Jin, Y. X.; Zhao, J.; Li, F.; Jia, W. P.; Liang, D. X.; Chen, H.; Li, R. R.; Hu, J. J.; Ni, J. M.; Wu, T. Q.; Zhong, D. P. Electrochim. Acta 2016, 220, 83.
[48] Chao, L.; Qin, Y.; He, J. J.; Ding, D.; Chu, F. Q. Int. J. Hydrogen Energy 2017, 42, 15107.
[49] Xu, H.; Yan, B.; Zhang, K.; Wang, J.; Li, S. M.; Wang, C. Q.; Shiraishi, Y.; Du, Y. K.; Yang, P. Electrochim. Acta 2017, 245, 227.
[50] Xu, H.; Yan, B.; Zhang, K.; Wang, J.; Li, S. M.; Wang, C. Q.; Du, Y. K.; Yang, P.; Jiang, S. J.; Song, S. Q. Appl. Surf. Sci. 2017, 416, 191.
[51] Li, Z. P.; Ruan, M. N.; Du, L. Q.; Wen, G. M.; Dong, C.; Li, H. W. J. Electroanal. Chem. 2017, 805, 47.
[52] Movahed, S. K.; Dabiri, M.; Bazgir, A. Appl. Catal., A:Gen. 2014, 488, 265.
[53] Zhou, J.; Chen, Q. Y.; Han, Y. X.; Zheng, S. R. RSC Adv. 2015, 5, 91363.
[54] Nie, R. F.; Miao, M.; Du, W. C.; Shi, J. J.; Liu, Y. C.; Hou, Z. Y. Appl. Catal., B:Environ. 2016, 180, 607.
[55] Singh, K.; Singh, A. K.; Singh, D.; Singh, R.; Sharma, S. Catal. Sci. Technol. 2016, 6, 3723.
[56] Keshipour, S.; Adak, K. RSC Adv. 2016, 6, 89407.
[57] Benyounes, A.; Kacimi, M.; Ziyad, M.; Serp, P. Chin. J. Catal. 2014, 35, 970.
[58] Vanyorek, L.; Halasi, G.; Pekker, P.; Kristály, F.; Kónya, Z. Catal. Lett. 2016, 146, 2268.
[59] Wang, L. L.; Zhu, L. P.; Bing, N. C.; Wang, L. J. J. Phys. Chem. Solids 2017, 107, 125.
[60] Dong, B. Q.; Li, Y. H.; Ning, X. M.; Wang, H. J.; Yu, H.; Peng, F. Appl. Catal., A:Gen. 2017, 545, 54.
[61] Duan, X. M.; Xiao, M. C.; Liang, S.; Zhang, Z. Y.; Zeng, Y.; Xi, J. B.; Wang, S. Carbon 2017, 119, 326.
[62] Zhang, H.; Yan, X. H.; Huang, Y. D.; Zhang, M. R.; Tang, Y. W.; Sun, D. M.; Xu, L.; Wei, S. H. Appl. Surf. Sci. 2017, 396, 812.
[63] Zuo, P. P.; Duan, J. Q.; Fan, H. L.; Qu, S. J.; Shen, W. Z. Appl. Surf. Sci. 2018, 435, 1020.
[64] Hao, Y.; Wang, S.; Sun, Q.; Shi, L.; Lu, A. H. Chin. J. Catal. 2015, 36, 612.
[65] Nie, R. F.; Jiang, H. R.; Lu, X. H.; Zhou, D.; Xia, Q. H. Catal. Sci. Technol. 2016, 6, 1913.

Outlines

/