Reviews

Photo-Induced Carbohydrate Synthesis and Modification

  • Ye Hui ,
  • Xiao Cong ,
  • Lu Liangqiu
Expand
  • a Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000;
    b Department of Chemistry, Georgia State University, Atlanta GA 30302-4098, USA;
    c Key Laboratory of Pesticide & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079

Received date: 2018-04-18

  Revised date: 2018-05-12

  Online published: 2018-05-17

Supported by

Project supported by Natural Science Foundation of Hubei Province (Nos. 2015CFC818, 2015CFA033), the Cultivation Fund Project of Huanggang Normal University (No. 201615503) and the Doctoral Fund Project of Huanggang Normal University (No. 2015001703).

Abstract

The synthesis of carbohydrates through photoredox catalysis has achieved a great process in the past decade. This review highlights the latest advances in this research area, including the photo-induced O-glycosylation and C-glycosylation, and the functional group modification and thiol-ene coupling reactions of carbohydrates.

Cite this article

Ye Hui , Xiao Cong , Lu Liangqiu . Photo-Induced Carbohydrate Synthesis and Modification[J]. Chinese Journal of Organic Chemistry, 2018 , 38(8) : 1897 -1906 . DOI: 10.6023/cjoc201804035

References

[1] (a) Kitamura, K.; Ando, Y.; Matsumoto, T.; Suzuki, K. Chem. Rev. 2018, 118, 1495.
(b) Wang, H.-Y.; Blaszczyk, S. A.; Xiao, G.; Tang, W. Chem. Soc. Rev. 2018, 47, 681.
[2] (a) Yang, Y.; Zhang, X.; Yu, B. Nat. Prod. Rep. 2015, 32, 1331.
(b) Yang, Y.; Yu, B. Chem. Rev. 2017, 117, 12281.
(c) Zeng, J.; Xu, Y.; Wang, H.; Meng, L.; Wan, Q. Sci. China Chem. 2017, 60, 1162.
[3] (a) Wu, Y.; Xiong, D.-C.; Chen, S.-C.; Wang, Y.-S.; Ye, X.-S. Nat. Commun. 2017, 8, 14851.
(b) Yu, B. Acc. Chem. Res. 2018, 51, 507.
(c) Gao, P.-P.; Zhu, S.-Y.; Cao, H.; Yang, J.-S. J. Am. Chem. Soc. 2016, 138, 1684.
(d) Qin, C.; Schumann, B.; Zou, X.; Pereira, C. L.; Tian, G.; Hu, J.; Seeberger, P. H.; Yin, J. J. Am. Chem. Soc. 2018, 140, 3120.
(e) Zhou, X.; Wang, P.; Zhang, L.; Chen, P.; Ma, M.; Song, N.; Ren, S.; Li, M. J. Org. Chem. 2018, 83, 588.
(f) Shu, P.; Xiao, X.; Zhao, Y.; Tao, J.; Wang, H.; Lu, Z.; Yao, G.; Zeng, J.; Wan, Q. Angew. Chem., Int. Ed. 2015, 54, 14432.
(g) Xiao, X.; Zhao, Y.; Shu, P.; Zhao, X.; Liu, Y.; Sun, J.; Zhang, Q.; Zeng, J.; Wan, Q. J. Am. Chem. Soc. 2016, 138, 13402.
[4] (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(b) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 985.
(c) Chen, J.-R.; Hu, X.-Q.; Lu, L.-Q.; Xiao, W.-J. Acc. Chem. Res. 2016, 49, 1911.
(d) Guan, B.; Xu, X.; Wang, H.; Li, X. Chin. J. Org. Chem. 2016, 36, 1564(in Chinese). (关保川, 许孝良, 王红, 李小年, 有机化学, 2016, 36, 1564.)
(e) Ravelli, D.; Protti, S.; Fagnoni, M. Chem. Rev. 2016, 116, 9850.
(f) Kärkäs, M. D.; Porco, Jr., J. A.; Stephenson, C. R. J. Chem. Rev. 2016, 116, 9683.
(g) Liu, Q.; Wu, L.-Z. Natl. Sci. Rev. 2017, 4, 359.
(h) Song, H.; Liu, X.; Qin, Y. Acta Chim. Sinica 2017, 75, 1137(in Chinese). (宋颢, 刘小宇, 秦勇, 化学学报, 2017, 75, 1137.)
(i) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Chem. Soc. Rev. 2018, 47, 654.
[5] Sangwan, R.; Mandal, P. K. RSC Adv. 2017, 7, 26256.
[6] Hashimoto, S.; Kurimoto, I; Fujii, Y.; Noyori, R. J. Am. Chem. Soc. 1985, 107, 1427.
[7] Wen, P.; Crich, D. Org. Lett. 2017, 19, 2402.
[8] Iwata, R.; Uda, K.; Takahashi, D.; Toshima, K. Chem. Commun. 2014, 50, 10695.
[9] Kimura, T.; Eto, T.; Takahashi, D.; Toshima, K. Org. Lett. 2016, 18, 3190.
[10] Griffin, G. W.; Bandara, N. C.; Clarke, M. A.; Tsang, W.-S.; Garegg, P. J.; Oscarson, S.; Silwanis, B. A. Heterocycles 1990, 30, 939.
[11] Nakanishi, M.; Takahashi, D.; Toshima, K. Org. Biomol. Chem. 2013, 11, 5079.
[12] Wever, W. J.; Cinelli, M. A.; Bowers, A. B. Org. Lett. 2013, 15, 30.
[13] Mao, R.-Z.; Guo, F.; Xiong, D.-C.; Li, Q.; Duan, J.; Ye, X.-S. Org. Lett. 2015, 17, 5606.
[14] Mao, R.-Z.; Xiong, D.-C.; Guo, F.; Li, Q.; Duan, J.; Ye, X.-S. Org. Chem. Front. 2016, 3, 737.
[15] Yu, Y.; Xiong, D.-C.; Mao, R.-Z.; Ye, X.-S. J. Org. Chem. 2016, 81, 7134.
[16] Spell, M. L.; Deveaux, K.; Bresnahan, C. G.; Bernard, B. L.; Sheffield, W.; Kumar, R.; Ragains, J. R. Angew. Chem., Int. Ed. 2016, 55, 6515.
[17] Furuta, T.; Takeuchi, K.; Iwamura, M. Chem. Commun. 1996, 157.
[18] Cumpstey, I.; Crich, D. J. Carbohydr. Chem. 2011, 30, 469.
[19] Spell, M.; Wang, X.; Wahba, A. E.; Conner, E.; Ragains, J. Carbohydr. Res. 2013, 369, 42.
[20] Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2010, 49, 7274.
[21] Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2012, 51, 4140.
[22] Andrews, R. S.; Becker, J. J.; Gagné, M. R. Org. Lett. 2011, 13, 2406.
[23] Wang, H.; Tao, J.; Cai, X.; Chen, W.; Zhao, Y.; Xu, Y.; Yao, W.; Zeng, J.; Wan, Q. Chem.-Eur. J. 2014, 20, 17319.
[24] Xue, W.; Yuan, X.; Cheng, S.; Shi, Y. Synthesis 2014, 46, 331.
[25] Dai, C.; Narayanam, J. M.; Stephenson, C. R. Nat. Chem. 2011, 3, 140.
[26] Wang, B.; Xiong, D.-C.; Ye, X.-S. Org. Lett. 2015, 17, 5698.
[27] Rasool, F.; Bhat, A. H.; Hussain, N.; Mukherjee, D. Chemis-trySelect 2016, 1, 6553.
[28] Gao, X.-F.; Du, J.-J.; Liu, Z.; Guo, J. Org. Lett. 2016, 18, 1166.
[29] (a) Wittrock, S.; Becker, T.; Kunz, H. Angew. Chem., Int. Ed. 2007, 46, 5226.
(b) Dondoni, A. Angew. Chem., Int. Ed. 2008, 47, 8995.
(c) Floyd, N.; Vijayakrishnan, B.; Koeppe, J. R.; Davis, B. G. Angew. Chem., Int. Ed. 2009, 48, 7798.
(d) Kramer, J. R.; Deming, T. J. J. Am. Chem. Soc. 2010, 132, 15068.
(e) Tucker-Schwartz, A. K.; Farrell, R. A.; Garrell, R. L. J. Am. Chem. Soc. 2011, 133, 11026.
(f) Wojcik, F.; O'Brien, A. G.; Goetze, S.; Seeberger, P. H. Chem. Eur. J. 2013, 19, 3090.
[30] Limnios, D.; Kokotos, C. G. Adv. Synth. Catal. 2017, 359, 323.
[31] Zhao, G.; Kaur, S.; Wang, T. Org. Lett. 2017, 19, 3291.

Outlines

/