Chinese Journal of Organic Chemistry >
Functional Switch between Pharmacophore and Directing Group and Their Application in Drug Discovery and Development via C-H Activation and Functionalization
Received date: 2018-03-02
Revised date: 2018-05-04
Online published: 2018-06-06
Supported by
Project supported by the Introduction of Innovative R&D Team Program of Guangdong Province (No. 201301Y0105381261), the State Key Laboratory of Anti-Infective Drug Development (No. 2015DQ780357) and the National Major Scientific and Technological Special Project for "Significant New Drugs Development" (No. 2018ZX09201002).
The functional switch of a C—H activation directing group to a pharmacophore is introduced and analyzed, and the value of the pharmacophore and the application of C—H activation are exemplified. It is concluded that many pharmacophores, such as N-containing heteroaromatic, nitrile, carboxylic acid, amide and sulfonamide groups, are ideal directing groups for C—H activation enabling the subsequent stages of drug synthesis, and showing that there is a correlation between a directing group and a pharmacophore. The late-stage functionalization will greatly simplify and effectively improve the possibility of discovering new drugs and potentially shortening the overall synthesis. The latest breakthroughs of C—H activation and application in the drug discovery process are reviewed as case studies, providing several industrial examples of using a pharmacophore as directing group for drug synthesis. It is believed that this development will promote a more rapid and green drug synthesis.
Ren Qingyun , Nie Biao , Zhang Yingjun , Zhang Ji . Functional Switch between Pharmacophore and Directing Group and Their Application in Drug Discovery and Development via C-H Activation and Functionalization[J]. Chinese Journal of Organic Chemistry, 2018 , 38(10) : 2465 -2490 . DOI: 10.6023/cjoc201803002
[1] (a) Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. Acc. Chem. Res. 2008, 41, 40.
(b) Mason, J. S.; Morize, I.; Menard, P. R.; Cheney, D. L.; Hulme, C.; Labaudiniere, R. F. J. Med. Chem. 1999, 42, 3251.
(c) Leach, A. R.; Gillet, V. J.; Lewis, R. A.; Taylor, R. J. Med. Chem. 2010, 53, 539.
[2] (a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
(b) Zhu, R. Y.; Farmer, M. E.; Chen, Y. Q.; Yu, J.-Q. Angew. Chem., Int. Ed. 2016, 55, 2.
[3] (a) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624.
(b) Murakami, K.; Yamada, S.; Kaneda, T.; Itami, K. Chem. Rev. 2017, 117, 9302.
[4] (a) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960.
(b) Pulis, A. P.; Procter, D. L. Angew. Chem., Int. Ed. 2016, 55, 9842.
[5] (a) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173.
(b) Ping, Y. Y.; Wang, L. P.; Ding, Q. P.; Peng, Y. Y. Adv. Synth. Catal. 2017, 359, 3274.
[6] (a) Wencel-Delord, J.; Droege, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740.
(b) Chen, Z. K.; Wang, B. J.; Zhang, J. T.; Yu, W. L.; Liu, Z. X.; Zhang, Y. H. Org. Chem. Front. 2015, 2, 1107.
[7] (a) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.
(b) Aziz, J.; Piguel, S. Synlett. 2017, 49, 4562.
[8] (a) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788.
(b) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Nature 1993, 366, 529.
(c) Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai, S. J. Am. Chem. Soc. 2003, 125, 1698.
[9] (a) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2012, 45, 5068.
(b) Shang, M.; Sun, S. Z.; Wang, H. L.; Wang, M. M.; Dai, H. X. Synthesis 2016, 48, 4381.
[10] (a) Neufeldt, S. R.; Sanford, M. S. Acc. Chem. Res. 2012, 45, 936.
(b) Biafora, A.; Gooβen, L. J. Synlett 2017, 28, 1885.
[11] (a) Ackermann, L. Acc. Chem. Res. 2014, 47, 281.
(b) Font, M.; Quibell, J. M.; Perry, G. J. P.; Larrosa, I. Chem. Commun. 2017, 53, 5584.
[12] (a) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2012, 102, 1731.
(b) Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2012, 102, 1731.
(c) Wang, S.; Yan, F.; Wang, L. S.; Zhu, L. Chin. J. Org. Chem. 2018, 38, 291(in Chinese). (汪珊, 严沣, 汪连生, 朱磊, 有机化学, 2018, 38, 291.)
[13] Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W. Chem. Soc. Rev. 2016, 45, 546.
[14] Schneider, N.; Lowe, D. M.; Sayle, R. A.; Tarselli, M. A.; Landrum, G. A. J. Med. Chem. 2016, 59, 4385.
[15] Wu, X. F.; Neumann, H.; Beller, M. Chem. Soc. Rev. 2011, 40. 4986.
[16] (a) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40. 5068.
(b) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960.
[17] Zhang, W.; Zhang, J. H.; Liu, Y. K. Chin. J. Org. Chem. 2014, 34, 36(in Chinese). (张巍, 张家慧, 刘运奎, 有机化学, 2014, 34, 36.)
[18] Mousseau, J. J.; Charette, A. B. Acc. Chem. Res. 2013, 46, 412.
[19] Zhang, J.; Nie, B.; Zhang, Y. J. Chin. J. Org. Chem. 2015, 35, 337(in Chinese). (张霁, 聂飚, 张英俊, 有机化学, 2015, 35, 337.)
[20] Pennington, L. D.; Moustakas, D. T. J. Med. Chem. 2017, 60, 3552.
[21] Verheij, M. H. P.; Thompson, A. J.; van Muijlwijk-Koezen, J. E.; Lummis, S. C. R.; Leurs, R.; de Esch, I. J. P. J. Med. Chem. 2012, 55, 8603.
[22] Borrmann, T.; Abdelrahman, A.; Volpini, R.; Lambertucci, C.; Alksnis, E.; Gorzalka, S.; Knospe, M.; Schiedel, A. C.; Cristalli, G.; Müller, C. E. J. Med. Chem. 2009, 52, 5974.
[23] Yuan, Y.; Zaidi, S. A.; Elbegdorj, O.; Aschenbach, L. C. K.; Li, G.; Stevens, D. L.; Scoggins, K. L.; Dewey, W. L.; Selley, D. E.; Zhang, Y. J. Med. Chem. 2013, 56, 9156.
[24] Verhoest, P. R.; Chapin, D. S.; Corman, M.; Fonseca, K.; Harms, J. F.; Hou, X.; Marr, E. S.; Menniti, F. S.; Nelson, F.; O'Connor, R.; Pandit, J.; Proulx-LaFrance, C.; Schmidt, A. W.; Schmidt, C. J.; Suiciak, J. A.; Liras, S. J. Med. Chem. 2009, 52, 5188.
[25] Vanotti, E.; Amici, R.; Bargiotti, A.; Berthelsen, J.; Bosotti, R.; Ciavolella, A.; Cirla, A.; Cristiani, C.; D'Alessio, R.; Forte, B.; Isacchi, A.; Martina, K.; Menichincheri, M.; Molinari, A.; Montagnoli, A.; Orsini, P.; Pillan, A.; Roletto, F.; Scolaro, A.; Tibolla, M.; Valsasina, B.; Varasi, M.; Volpi, D.; Santocanale, C. J. Med. Chem. 2008, 51, 487.
[26] Duraiswamy, A. J.; Lee, M. A.; Madan, B.; Ang, S. H.; Tan, E. S. W.; Cheong, W. W. V.; Ke, Z.; Pendharkar, V.; Ding, L. J.; Chew, Y. S.; Manoharan, V.; Sangthongpitag, K.; Alam, J.; Poulsen, A.; Ho, S. Y.; Virshup, D. M.; Keller, T. H. J. Med. Chem. 2015, 58, 5889.
[27] Blum, C. A.; Caldwell, T.; Zheng, X.; Bakthavatchalam, R.; Capitosti, S.; Brielmann, H.; De Lombaert, S.; Kershaw, M. T.; Matson, D.; Krause, J. E.; Cortright, D.; Crandall, M.; Martin, W. J.; Murphy, B. A.; Boyce, S.; Jones, A. B.; Mason, G.; Rycroft, W.; Perrett, H.; Conley, R.; Burnaby-Davies, N.; Chenard, B. L.; Hodgetts, K. J. J. Med. Chem. 2010, 53, 3330.
[28] Kalyani, D.; Deprez, N. R.; Desai, L.; Sanford, V. M. S. J. Am. Chem. Soc. 2005, 127, 7330.
[29] Shabashov, D.; Daugulis, O. Org. Lett. 2005, 7, 3657.
[30] Yu, W.-Y.; Sit, W. N.; Zhou, Z.; Chan, A. S.-C. Org. Lett. 2009, 11, 3174.
[31] Li, W.; Yin, Z.; Jiang, X.; Sun, P. J. Org. Chem. 2011, 76, 8543.
[32] Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am. Chem. Soc. 2006, 128, 9048.
[33] Kalyani, D.; Sanford, M. S. Org. Lett. 2005, 7, 4149.
[34] Feng, C.-G.; Ye, M.; Xiao, K.-J.; Li, S.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 9322.
[35] Li, C.; Yano, T.; Ishida, N.; Murakami, M. Angew. Chem., Int. Ed. 2013, 52, 9801.
[36] (a) Campeau, L.-C.; Rousseaux, S.; Fagnou, K. J. Am. Chem. Soc. 2005, 127, 18020.
(b) Campeau, L.-C.; Schipper, D. J.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 3266.
[37] Do, H.-Q.; Khan, R. M. K.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185.
[38] Xi, P.; Yang, F.; Qin, S.; Zhao, D.; Lan, J.; Gao, G.; Hu, C.; You, J. J. Am. Chem. Soc. 2010, 132, 1822.
[39] Gong, X.; Song, G.; Zhang, H.; Li, X. Org. Lett. 2011, 13, 1766.
[40] Kanyiva, K. S.; Nakao, Y.; Hiyama, T. Angew. Chem., Int. Ed. 2007, 46, 8872.
[41] Cho, S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254.
[42] Patrick, F.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 10139.
[43] Hilton, M. C.; Dolewski, R. D.; McNally, A. J. Am. Chem. Soc. 2016, 138, 13806
[44] Cao, H.; Chen, L.; Liu, J.; Cai, H.; Deng, H.; Chen, G.; Yan, C.; Chen, Y. RSC Adv. 2015, 5, 22356.
[45] Cao, H.; Lei, S.; Liao, J.; Huang, J.; Qiu, H.; Chen, Q.; Qiu, S.; Chen, Y. RSC Adv. 2014, 4, 50137.
[46] Koubachi, J.; El Kazzouli, S.; Berteina-Raboin, S.; Mouaddib, A.; Guillaumet, G. Synthesis 2008, 2537.
[47] Cao, H.; Lei, S.; Li, N.; Chen, L.; Cai, H.; Tan, J. Chem. Commun. 2015, 51, 1823.
[48] Samanta, S.; Mondal, S.; Santra, S.; Kibriya, G.; Hajra, A. J. Org. Chem. 2016, 81, 10088.
[49] Yadav, M.; Dara, S.; Saikam, V.; Kumar, M.; Aithagani, S. K.; Paul, S.; Vishwakarma, R. A.; Singh, P. P. Eur. J. Org. Chem. 2015, 29, 6526.
[50] (a) Monir, K.; Bagdi, A. K.; Ghosh, M.; Hajra, A. J. Org. Chem. 2015, 80, 1332.
(b) Ji, X.-M.; Wei, L.; Chen, F.; Tang, R.-Y. RSC Adv. 2015, 5, 29766.
[51] Zhao, D.; Wang, W.; Yang, F.; Lan, J.; Yang, L.; Gao, G.; You, J. Angew. Chem., Int. Ed. 2009, 48, 3296.
[52] Fleming, F. F.; Yao, L.-H.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53, 7902.
[53] Wang, J.; Liu, H. Chin. J. Org. Chem. 2012, 32, 1643(in Chinese). (王江, 柳红, 有机化学, 2012, 32, 1643.)
[54] Hingorani, M.; Lightman, S. Drugs 1995, 50, 208.
[55] Norman, P. Curr. Opin. Anti-Inflammatory Immunomodulatory Invest. Drugs 2000, 2, 113.
[56] Reginster, J.-Y.; Brandi, M.-L.; Cannata-Andia, J.; Cooper, C.; Cortet, B.; Feron, J.-M.; Genant, H.; Palacios, S.; Ringe, J. D.; Rizzoli, R. Osteoporosis Int. 2015, 26, 1667.
[57] Rodriguez-Tudela, J. L.; Alcazar-Fuoli, L.; Mellado, E.; Alastruey-Izquierdo, A.; Monzon, A.; Cuenca-Estrella, M. Antimicrob. Agents Chemother. 2008, 52, 2468.
[58] Illnait-Zaragozi, M. T.; Martínez, G. F.; Curfs-Breuker, I.; Fernández, C. M.; Boekhout, T.; Meis, J. F. Antimicrob. Agents Chemother. 2008, 52, 1580.
[59] Yin, W.; Tsutsumi, K. Cardiovasc. Drug Rev. 2003, 21, 133.
[60] Hosie, J.; Scott, A. K.; Petrie, J. C.; Cockshott, I. D. Br. J. Clin. Pharmacol. 1990, 29, 333.
[61] Sánchez, C.; Bøgesø, K. P.; Ebert, B.; Reines, E. H.; Braestrup, C. Psychopharmacology (Berl) 2004, 174, 163.
[62] Usui, F.; Maeda, K.; Kusai, A.; Nishimura, K.; Yamamoto, K. Int. J. Pharmol. 1997, 154, 59.
[63] Hughes, Z. A.; Starr, K. R.; Langmead, C. J.; Hill, M.; Bartoszyk, G. D.; Hagan, J. J.; Middlemiss, D. N.; Dawson, L. A. Eur. J. Pharmacol. 2005, 510, 49.
[64] Bourin, M.; NicDhonnchadha, B. A.; Claude, C. M.; Dib, M.; Hascoet, M. Behav. Brain Res. 2001, 124, 87.
[65] Sanna, E.; Busonero, F.; Talani, G.; Carta, M.; Massa, F.; Peis, M.; Maciocco, E.; Biggio, G. Eur. J. Pharmacol. 2002, 451, 103.
[66] John, G. W.; Perez, M.; Pauwels, P. J.; Le Grand, B.; Verscheure, Y.; Colpaert, F. C. CNS Drug Rev. 2000, 6, 278.
[67] White, W. B.; Cannon, C. P.; Heller, S. R.; Nissen, S. E.; Bergenstal, R. M.; Bakris, G. L.; Perez, A. T.; Fleck, P. R.; Mehta, C. R.; Kupfer, S.; Wilson, C.; Cushman, W. C.; Zannad, F. N. Engl. J. Med. 2013, 369, 1327.
[68] (a) Anbarasan, P.; Schareina, T.; Beller, M. Chem. Soc. Rev. 2011, 40, 5049.
(b) Dey, A.; Agasti, S.; Maiti, D. Org. Biomol. Chem. 2016, 14, 5440.
(c) Yang, J. Org. Biomol. Chem. 2015, 13, 1930.
(d) Qiu, G.; Wu, J. Org. Chem. Front. 2015, 2, 169.
(e) Zhang, M.; Zhang, Y.; Jie, X.; Zhao, H.; Li, G.; Su, W. Org. Chem. Front. 2014, 1, 843.
(f) Liu, J.; Chen, G.; Tan, Z. Adv. Synth. Catal. 2016, 358, 1174.
[69] Li, W.; Xu, Z.; Sun, P.; Jiang, X.; Fang, M. Org. Lett. 2011, 13, 1286.
[70] Du, B.; Jiang, X.; Sun, P. J. Org. Chem. 2013, 78, 2786
[71] Reddy, M. C.; Jeganmohan, M. Chem. Commun. 2015, 51, 10738
[72] Li, W.; Sun, P. J. Org. Chem. 2012, 77, 8362.
[73] Chotana, G. A.; Rak, M. A.; Smith, M. R. J. Am. Chem. Soc. 2005, 127, 10539.
[74] Bera, M.; Modak, A.; Patra, T.; Maji, A.; Maiti, D. Org. Lett. 2014, 16, 5760.
[75] Tang, R. Y.; Li, G.; Yu, J.-Q. Nature 2014, 507, 215.
[76] Bag, S.; Patra, T.; Modak, A.; Deb, A.; Maity, S.; Dutta, U.; Dey, A.; Kancherla, R.; Maji, A.; Hazra, A.; Bera, M.; Maiti, D. J. Am. Chem. Soc. 2015, 137, 11888.
[77] Lassalas, P.; Gay, B.; Lasfargeas, C.; James, M. J.; Tran, V.; Vijayendran, K. G.; Brunden, K. R.; Kozlowski, M. C.; Thomas, C. J.; Smith Ⅲ, A. B.; Huryn, D. M.; Ballatore, C. J. Med. Chem. 2016, 59, 3183.
[78] Smith, D. A. Metabolism, Pharmaco Kinetics and Toxicity of Functional Groups:Impact of the Building Blocks of Medicinal Chemistry in ADMET, Royal Society of Chemistry, Cambridge, UK, 2010, Chapter 3, pp. 99~167.
[79] (a) Kaeding, W. J. Org. Chem. 1961, 26, 3144.
(b) Kaeding, W.; Shulgin, A. T. J. Org. Chem. 1962, 27, 3551.
(c) Kaeding, W. J. Org. Chem. 1964, 29, 2556.
(d) Kaeding, W. J. Org Chem. 1965, 30, 3750.
(e) Kaeding, W. J. Org. Chem. 1965, 30, 3754
[80] Drapeau, M. P.; Gooβen, L. J. Chem.-Eur. J. 2016, 22, 1.
[81] Miura, M.; Tsuda, T.; Satoh, T.; Pivsa-Art, S.; Nomura, M. J. Org. Chem. 1998, 63, 5211.
[82] Bechtoldt, A.; Tirler, C.; Raghuvanshi, K.; Warratz, S.; Kornhaaß, C.; Ackermann, L. Angew. Chem., Int. Ed. 2016, 55, 264.
[83] Chiong, H. A.; Pham, Q. N.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 9879.
[84] (a) Giri, R.; Maugel, N.; Li, J. J.; Wang, D. H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007, 129, 3510.
(b) Wang, D. H.; Mei, T.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 17676.
[85] Huang, L.; Biafora, A.; Zhang, G.; Bragoni, V.; Gooßen, L. J. Angew. Chem., Int. Ed. 2016, 55, 6933.
[86] Mamone, P.; Danoun, G.; Gooßen, L. Angew. Chem., Int. Ed. 2013, 52, 6704.
[87] Reinaud, O.; Capdevielle, P.; Maumy, M. J. Chem. Soc., Chem. Commun. 1990, 566.
[88] Taktak, S.; Flook, M.; Foxman, B. M.; Que, L. Jr.; Rybak-Akimova, E. V. Chem. Commun. 2005, 42, 5301.
[89] (a) Ng, K. H.; Ng, F. N.; Yu, W. Y. Chem. Commun. 2012, 48, 11680.
(b) Ng, F. N, Zhou, Z.; Yu, W. Y. Chem.-Eur. J. 2014, 20, 4474.
[90] Lee, D.; Chang, S. Chem.-Eur. J. 2015, 21, 5364.
[91] Mei, T.-S.; Giri, R.; Maugel, N.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 5215.
[92] Wang, D.-H.; Masa, M.; Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 7190.
[93] Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14058.
[94] Wang, G.-W.; Yuan, T.-T. J. Org. Chem. 2010, 75, 476.
[95] Wang, G.-W.; Yuan, T.-T.; Li, D.-D. Angew. Chem., Int. Ed. 2011, 50, 1380.
[96] Karthikeyan, J.; Cheng, C. H. Angew. Chem., Int. Ed. 2011, 50, 9880.
[97] (a) Pimparkar, S.; Jeganmohan, M. Chem. Commun. 2014, 50, 12116.
(b) Peng X.; Wang, W.; Jiang, C.; Sun, D.; Xu, Z.; Tung, C.-H. Org. Lett. 2014, 16, 5354.
[98] Karthikeyan, J.; Haridharan, R.; Cheng, C.-H. Angew. Chem., Int. Ed. 2012, 51, 12343.
[99] Li, D.-D.; Yuan, T.-T.; Wang, G.-W. Chem. Commun. 2011, 47, 12789
[100] Wrigglesworth, J. W.; Cox, B.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. Org. Lett. 2011, 13, 5326.
[101] Zhong, H.; Yang, D.; Wang, S.; Huang, J. Chem. Commun. 2012, 48, 3236
[102] Rakshit, S.; Grohmann, C.; Besset, T.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2350.
[103] Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 5364.
[104] Yang, W.; Wang, S.; Zhang, Q.; Liu, Q.; Xu, X. Chem. Commun. 2015, 51, 661.
[105] Yang, W.; Sun, J.; Xu, X.; Zhang, Q.; Liu, Q. Chem. Commun. 2014, 50, 4420.
[106] Wang, H.; Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 7318.
[107] Wang, Z.; Kuninobu, Y.; Kanai, M. J. Am. Chem. Soc. 2015, 137, 6140.
[108] Hyster, T. K.; Ruhl, K. E.; Rovis, T. J. Am. Chem. Soc. 2013, 135, 5364.
[109] Li, J.-J.; Mei, T.-S.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 6452.
[110] Dai, H. X.; Stepan, A. F.; Plummer, M. S.; Zhang, Y. H.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 7222.
[111] Pham, M. V, Ye, B.; Cramer, N. Angew. Chem., Int. Ed. 2012, 51, 10610.
[112] Xie, W.; Yang, J.; Wang, B.; Li, B. J. Org. Chem. 2014, 79, 8278.
[113] Li, X.; Dong, Y.; Qu, F.; Liu, G. J. Org. Chem. 2015, 80, 790.
[114] Zhang, Z.; Tanaka, K.; Yu, J.-Q. Nature 2017, 543, 538.
[115] Wallace, M. D.; McGuire, M. A.; Yu, M. S.; Goldfinger, L.; Liu, L.; Dai, W.; Shilcrat, S. Org. Process Res. Dev. 2004, 8, 738
[116] Fray, M. J.; Gillmore, A. T.; Glossop, M. S.; McManus, D. J.; Moses, I. B.; Praquin, C. F. B.; Reeves, K. A.; Thompson, L. R. Org. Process Res. Dev. 2010, 14, 263.
[117] Madasu, S. B.; Vekariya, N. A.; Koteswaramma, C.; Islam, A.; Sanasi, P. D.; Korupolu, R. B. Org. Process Res. Dev. 2012, 16, 2025.
[118] Ackermann, L. Org. Process Res. Dev. 2015, 19, 260.
[119] Seki, M. Org. Process Res. Dev. 2016, 20, 867.
[120] (a) Huang, J.; Chan, J.; Chen, Y.; Borths, C. J.; Baucom, K. D.; Larsen, R. D.; Faul, M. M. J. Am. Chem. Soc. 2010, 132, 3674.
(b) Huang, J.; Wang, X.; Chan, J. Sustainable Catalysis:Challenges and Practices for the Pharmaceutical and Fine Chemical Industries, Eds.:Dunn, P. J.; Hii, K. K.; Krische, M. J.; Williams, M. T., Wiley Inc., Hoboken, New Jersey, 2013, Chapter 12.
[121] Gauthier, D. R. Jr.; Limanto, J.; Devine, P. N.; Desmond, R. A.; Szumigala, R. H. Jr.; Foster, B. S, Volante, R. P. J. Org. Chem. 2005, 70, 5938.
[122] Ouellet, S. G.; Roy, A.; Molinaro, C.; Angelaud, R.; Marcoux, J. F.; O'shea, P. D.; Davies, J. W. J. Org. Chem. 2011, 76, 1436.
[123] (a) Phipps, R. J.; Gaunt, M. J. Science 2009, 323, 1593.
(b) Yang, Y.-F.; Cheng, G.-J.; Liu, P.; Leow, D.; Sun, T.-Y.; Chen, P.; Zhang, X.; Yu, J.-Q.; Wu, Y.-D.; Houk, K. N. J. Am. Chem. Soc. 2014, 136, 344.
(c) Yang, G.; Lindovska, P.; Zhu, D.; Kim, J.; Wang, P.; Tang, R.-Y.; Movassaghi, M.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 10807.
/
〈 |
|
〉 |