Chinese Journal of Organic Chemistry >
Synthesis and Fluorescent Sensing Application of Porous Organic Polymer Materials
Received date: 2018-04-05
Revised date: 2018-05-15
Online published: 2018-06-06
Supported by
Project supported by the Undergraduates Innovation Project of South China Normal University (No. 20181415), the Natural Science Foundation of Guangdong Province (No. 2014A030313429), the Guangzhou Science and Technology Project Scientific Special (No. 201607010251), the Applied Science and Technology Research and Development Special Foundation of Guangdong Province (No. 2016B090930004) and the Guangdong Provincial Science and Technology Project (No. 2017A010103016).
Porous organic polymer fluorescence materials have the characteristics of high porosity and outstanding fluorescence properties. The function of fluorescence sensing is given when the skeleton has binding sites with specific analytes, such as nitroaromatic explosives (NAEs), metal ions, anions, gases, organic solvents, etc. In this paper, according to the different types of porous organic polymer materials (POPs), namely the amorphous porous organic polymer materials, crystal porous metal organic framework materials (MOFs) containing coordination bond, and crystal covalent organic framework materials (COFs), the new progress of the POPs fluorescence materials in recent years is reviewed. Especially, the design and synthesis based on functional organic molecules, and their fluorescence sensing applications, are introduced in details. In the future, continuing to design new types of fluorescent COFs from the molecular level is a development direction of highly efficient and recyclable fluorescence chemosensors for detecting NAEs, metal ions, anions, etc.
Pang Chuming , Luo Shihe , Hao Zhifeng , Gao Jian , Huang Zhaohao , Yu Jiahai , Yu Simin , Wang Zhaoyang . Synthesis and Fluorescent Sensing Application of Porous Organic Polymer Materials[J]. Chinese Journal of Organic Chemistry, 2018 , 38(10) : 2606 -2624 . DOI: 10.6023/cjoc201804009
[1] Das, S.; Heasman, P.; Ben. T.; Qiu, S. L. Chem. Rev. 2017, 117, 1515.
[2] Dalapati, S.; Gu, C.; Jiang, D. L. Small 2016, 12, 6513.
[3] Tan, L. X.; Tan, B. Chem. Soc. Rev. 2017, 46, 3322.
[4] Zhang, W. J.; Aguila, B.; Ma, S. Q. J. Mater. Chem. A 2017, 5, 8795.
[5] Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105.
[6] Wu, D. C.; Xu, F.; Sun. B.; Fu, R. W.; He, H. K.; Matyjaszewski, K. Chem. Rev. 2012, 112, 3959.
[7] Xu, Y. H.; Jin, S. B.; Xu, H.; Nagai, A.; Jiang, D. L. Chem. Soc. Rev. 2013, 42, 8012.
[8] Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Chem. Soc. Rev. 2017, 46, 3242.
[9] Ren, X. M.; Kong, S. N.; Shu, Q. D.; Shu, M. H. Chin. J. Chem. 2016, 34, 373.
[10] Kong, S. N.; Malik, A. U. Qian, X. F.; Shu, M. H.; Xiao, W. D. Chin. J. Org. Chem. 2018, 38, 656(in Chinese). (孔胜男, Abaid Ullah Malik, 钱雪峰, 舒谋海, 肖文德, 有机化学, 2018, 38, 656.)
[11] Geng, T.-M.; Li, D.-K.; Zhu, Z.-M.; Zhang, W.-Y.; Ye, S.-N.; Zhu, H.; Wang, Z.-Q. Anal. Chim. Acta 2018, 1011, 77.
[12] Zheng, T.-R.; Blatov, V. A.; Zhang, Y.-Q.; Yang, C.-H.; Qian, L.-L.; Li, K.; Li, B.-L.; Wu, B. J. Lumin. 2018, 199, 162.
[13] Chen, L.; He, L. W.; Ma, F. Y.; Liu, W.; Wang, Y. X.; Silver, M. A; Chen, L. H.; Zhu, L.; Gui, D. X.; Juan, D. W.; Chai, Z. F.; Wang, S. A. ACS Appl. Mater. Interfaces 2018, 10,15364
[14] Patra, A.; Scherf, U. Chem.-Eur. J. 2012, 18, 10074.
[15] Jiang, J. X.; Trewin, A.; Adams, D. J.; Cooper, A. I. Chem. Sci. 2011, 2, 1777.
[16] Dong, J. Q.; Zhang, K.; Li, X.; Qian, Y. H.; Zhu, H.; Yuan, D. Q.; Xu, Q. H.; Jiang, J. W.; Zhao, D. Nat. Commun. 2017, 8, 1142.
[17] Long, Y. Y.; Chen, H. B.; Wang, H. M.; Peng, Z.; Yang, Y. F.; Zhang, G. Q.; Li, N.; Liu, F.; Pei, J. Anal. Chim. Acta 2012, 744, 82.
[18] Sun, L. B.; Zou, Y. C.; Liang, Z. Q.; Yu, J. H.; Xu, R. R. Polym. Chem. 2014, 5, 471.
[19] Sun, L. B.; Liang, Z. Q.; Yu, J. H.; Xu, R. R. Polym. Chem. 2013, 4, 1932.
[20] Geng, T.-M.; Zhu, H.; Song, W.; Zhu, F.; Wang, Y. J. Mater. Sci. 2016, 51, 4104.
[21] Novotney, J. L.; Dichtel, W. R. ACS Macro Lett. 2013, 2, 423.
[22] Bandyopadhyay, S.; Pallavi, P.; Anil, A. G.; Patra, A. Polym. Chem. 2015, 6, 3775.
[23] Deshmukh, A.; Bandyopadhyay, S.; James, A.; Patra, A. J. Mater. Chem. C 2016, 4, 4427.
[24] Geng, T.-M.; Y, S. N.; Wang, Y.; Zhu, H.; Wang, X.; Liu, X. Talanta 2017, 165, 282.
[25] Xu, B. W.; Xu,. Y. X.; Wang, X. C.; Li, H. B.; Wu, X. F; Tong, H.; Wang, L. X. Polym. Chem. 2013, 4, 5056.
[26] Sang, N. N.; Zhan, C. X.; Cao, D. P. J. Mater. Chem. A 2015, 3, 92.
[27] Cui, Y. Z.; Liu, Y. C.; Liu, J. C.; Du, J. F.; Yu, Y.; Wang, S.; Liang, Z. Q.; Yu, J. H. Polym. Chem. 2017, 8, 4842.
[28] Yuan, K.; Guo-Wang, P. Y.; Hu, T.; Shi, L.; Zeng, R.; Forster, M.; Pichler, T.; Chen, Y. W.; Scherf, U. Chem. Mater. 2015, 27, 7403.
[29] Geng, T. M.; Zhu, Z. M.; Wang, X.; Xia, H. Y.; Wang, Y.; Li, D. K. Sens. Actuators B 2017, 244, 334.
[30] Gu, C.; Huang, N.; Gao, J.; Xu, F.; Xu, Y. H.; Jiang, D. L. Angew. Chem., Int. Ed. 2014, 53, 4850.
[31] Liu, X. M.; Xu, Y. H.; Jiang, D. L. J. Am. Chem. Soc. 2012, 134, 8738.
[32] Gu, C.; Huang, N.; Wu, Y.; Xu, H.; Jiang, D. L. Angew. Chem., Int. Ed. 2015, 54, 11540.
[33] Ma, D. X.; Li, B. Y.; Cui, Z. H.; Liu, K.; Chen, C. L.; Li, G. H.; Hua, J.; Ma, B. H.; Shi, Z.; Feng, S. H. ACS Appl. Mater. Interfaces 2016, 8, 24097.
[34] Jagadesan, P.; Eder, G.; McGrier, P. L. J. Mater. Chem. C 2017, 5, 5676.
[35] Zhao, W. X.; Zhuang, X. D.; Wu, D. Q.; Zhang, F.; Gehrig, D.; Laquai, F.; Feng, X. L. J. Mater. Chem. A 2013, 1, 13878.
[36] Li, Z. P.; Li, H.; Xia, H.; Ding, X. S.; Luo, X. L.; Liu, X. M.; Mu, Y. Chem.-Eur. J. 2015, 21, 17355.
[37] Suresh, V. M.; Bandyopadhyay, A.; Roy, S.; Pati, S. K.; Maji, T. K. Chem.-Eur. J. 2015, 21, 10799.
[38] Su, Y. Q.; Wang, Y. X.; Li, X. J.; Li, X. X.; Wang, R. H. ACS Appl. Mater. Interfaces 2016, 8, 18904.
[39] Lee, W. E.; Lee, C. L.; Sakaguchi, T.; Fujiki, M.; Kwak, G. Macromolecules 2011, 44, 432.
[40] Rao, K. V.; Mohapatra, S.; Maji, T. K.; George, S. J. Chem.-Eur. J. 2012, 18, 4505.
[41] Bonillo, B.; Sprick, R. S.; Cooper, A. I. Chem. Mater. 2016, 28, 3469.
[42] Dong, J. Q.; Tummanapelli, A. K.; Ying, S. M.; Hirao, H.; Zhao, D. Chem. Mater. 2016, 28, 7889.
[43] Gu, S.; Guo, J.; Huang, Q.; He, J. Q.; Fu, Y.; Kuang, G. C.; Pan, C. Y.; Yu, G. P. Macromolecules 2017, 50, 8512.
[44] Li, B.; Wen, H.-M.; Cui, Y. J.; Zhou, W.; Qian, G. D.; Chen, B. L. Adv. Mater. 2016, 28, 8819.
[45] Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Chem. Rev. 2012, 112, 1126.
[46] Suresh, V. M.; Chatterjee, S.; Modak, R.; Tiwari, V.; Patel, A. B.; Kundu, T. K.; Maji, T. K. J. Phys. Chem. C 2014, 118, 12241.
[47] Vellingiri, K.; Boukhyalov, D. W.; Pandey, S. K.; Deep, A.; Kim, K. H. Sens. Actuators B 2017, 245, 305.
[48] Hu, Z. C.; Pramanik, S.; Tan, K.; Zheng, C.; Liu, W.; Zhang, X.; Chabal, Y. J.; Li, J. Cryst. Growth Des. 2013, 13, 4204.
[49] Ye, J. W.; Wang, X. X.; Bogale, R. F.; Zhao, L. M.; Cheng, H.; Gong, W. T.; Zhao, J. Z.; Ning, G. L. Sens. Actuators B 2015, 210, 566.
[50] Li, X.; Yang, L.; Zhao, L.; Wang, X. L.; Shao, K. Z.; Su, Z. M. Cryst. Growth Des. 2016, 16, 4374.
[51] Wu, X. X.; Fu, H. R.; Han, M. L.; Zhou, Z.; Ma, L. F. Cryst. Growth Des. 2017, 17, 6041.
[52] Qi, X. J.; Jin, Y. H.; Li, N.; Wang, Z.; Wang, K. C.; Zhang, Q. H. Chem. Commun. 2017, 53, 10318.
[53] Bagheri, M.; Masoomi, M. Y.; Morsali, A. Sens. Actuators B 2017, 243, 353.
[54] Dalapati, R.; Biswas, S. Sens. Actuators B 2017, 239, 759.
[55] Zhao, S.-S.; Yang, J.; Liu. Y.-Y.; Ma, J.-F. Inorg. Chem. 2016, 55, 2261.
[56] Weng, H.; Yan, B. Sens. Actuators B 2016, 228, 702.
[57] Bogale, R. F.; Chen, Y. Z.; Ye, J. W.; Yang, Y. Y.; Rauf, A.; Duan, L. Y.; Tian, P.; Ning, G. L. Sens. Actuators B 2017 245, 171.
[58] Xu, H.; Hu, H.-C.; Cao, C.-S.; Zhao, B. Inorg. Chem. 2015, 54, 4585.
[59] Xiang, Z. H.; Fang, C. Q.; Leng, S. H.; Cao, D. P. J. Mater. Chem. A 2014, 2, 7662.
[60] Wang, F. Q.; Yu, Z. C.; Wang, C. M.; Xu, K. H.; Yu, J. G.; Zhang, J. X.; Fu, Y. Y.; Li, X. Y.; Zhao, Y. N. Sens. Actuators B 2017, 239, 688.
[61] Chen, S. G.; Shi, Z. Z.; Qin, L.; Jia, H. L.; Zheng, H. G. Cryst. Growth Des. 2017, 17. 67.
[62] Lian, C.; Chen, Y.; Li, S.; Hao, M. Y.; Gao, F.; Yang, L. R. J. Alloys Compd. 2017, 702, 303.
[63] Sun, Z.; Yang, M.; Ma, Y.; Li, L. C. Cryst. Growth Des. 2017, 17, 4326.
[64] Sun, Z.; Li, Y. G.; Ma, Y.; Li, L. C. Dyes Pigm. 2017, 146, 263.
[65] Das, A.; Biswas, S. Sens. Actuators B 2017, 250, 121.
[66] Liu, C.; Yan, B. Sens. Actuators B 2016, 235, 541.
[67] Zhao, J.; Wang, Y. N.; Dong, W. W.; Wu, Y. P.; Li, D. S.; Zhang, Q. C. Inorg. Chem. 2016, 55, 3265.
[68] Xu, X. Y.; Yan, B. Sens. Actuators B 2016, 222, 347.
[69] Singha, D. K.; Mahata, P. Inorg. Chem. 2015, 54, 6373.
[70] Wang, M. L.; Meng, G. W. Sens. Actuators B 2017, 243, 1137.
[71] Shahat, A.; Abd Elsalam, S.; Herrero-Martinez, J. M.; Simo-Alfonso, E. F.; Ramis-Ramos, G. Sens. Actuators B 2017, 25, 164.
[72] Zhou, J.-M.; Shi, W.; Xu, N.; Cheng, P. Inorg. Chem. 2013, 52, 8082.
[73] Minmini, R.; Naha, S.; Velmath, S. Sens. Actuators B 2017, 251, 644.
[74] Vellingiri, K.; Deep, A.; Kim, K. H.; Boukhvalov, D. W.; Kumar, P.; Yao, Q. Sens. Actuators B 2017, 241, 938.
[75] Wu, Z. L.; Dong, J.; Ni. W, Y.; Zhang, B. W.; Cui, J. Z.; Zhao, B. Inorg. Chem. 2015, 54, 5266.
[76] Tehrani, A. A.; Abbasi, H.; Esrafili, L.; Morsali, A. Sens. Actuators B 2018, 256, 706.
[77] Li, C. M.; Huang, J. P.; Zhu, H. L.; Liu, L. L.; Feng, Y. M.; Hu, G.; Yu, X. B. Sens. Actuators B 2017, 253, 275.
[78] Wanderley, M. M.; Wang, C.; Wu, C.-D.; Lin, W. B. J. Am. Chem. Soc. 2012, 134, 9050.
[79] Feng, X.; Feng, Y. Q.; Guo, N.; Sun, Y. L.; Zhang, T.; Ma, L. F.; Wang, L. Y. Inorg. Chem. 2017, 56, 1713.
[80] Yan, X. Z.; Wang, H. Z.; Hauke, C. E.; Cook, T. R.; Wang, M.; Saha, M. L.; Zhou, Z. X.; Zhang, M. M.; Li, X. P.; Huang, H. J. Am. Chem. Soc. 2015, 137, 15276.
[81] Jackson, S. L.; Rananaware, A.; Rix, C.; Bhosale, V.; Latham, K. Cryst. Growth Des. 2016, 16, 3067.
[82] Zeng, G.; Xing, S. H.; Wang, X. R.; Yang, Y. L.; Ma, D. X.; Liang, H. W.; Gao, L.; Hua, J.; Li, G. H.; Shi, Z. Inorg. Chem. 2016, 55, 1089.
[83] Yanai, N.; Kitayama, K.; Hijikata, Y.; Sato, H.; Matsuda, R.; Kubota, Y.; Takata, M.; Mizuno, M.; Uemura, T.; Kitagawa, S. Nat. Mater. 2011, 10, 787.
[84] Dalapati, R.; Balaji, S. N.; Trivedi, V.; Khamari, L.; Biswas, S. Sens. Actuators B 2017, 245, 1039.
[85] Cao, Y. Y.; Guo, X. F.; Wang, H. Sens. Actuators B 2017, 243, 8.
[86] Shustova, N. B.; Cozzolino, A. F.; Reineke, S.; Baldo, M.; Dinca, M. J. Am. Chem. Soc. 2013, 135, 13326.
[87] Dou, Z. S.; Yu, J. C.; Cui, Y. J.; Yang, Y.; Wang, Z. Y.; Yang, D. R.; Qian, G. D. J. Am. Chem. Soc. 2014, 136, 5527.
[88] Waller, P. J.; Gandara, F.; Yaghi, O. M. Acc. Chem. Res. 2015, 48, 3053.
[89] Segura, J. L.; Mancheno, M. J.; Zamora, F. Chem. Soc. Rev. 2016, 45, 5635.
[90] Feng, X.; Ding, X. S.; Jiang, D. L. Chem. Soc. Rev. 2012, 41, 6010.
[91] Diercks, C. S.; Yaghi, O. M. Science 2017, 355, eaal1585.
[92] Lu, Q. Y.; Ma, Y. C.; Li, H.; Guan, X. Y.; Yusran, Y.; Xue, M.; Fang, Q. R.; Yan, Y. S.; Qiu, S. L.; Valtchev, V. Angew. Chem., Int. Ed. 2018, 57, 6042.
[93] Nguyen, V.; Grunwald, M. J. Am. Chem. Soc. 2018, 140. 3306.
[94] Ding, S. Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.
[95] Xue, R.; Guo, H.; Wang, T.; Gong, L.; Wang, Y. N.; Ai, J. B.; Huang, D. D.; Chen, H. Q.; Yang, W. Anal. Methods 2017, 9, 3737.
[96] Fang, Q. R.; Zhuang, Z. B.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J. H.; Qiu, S. L.; Yan, Y. S. Nat. Commun. 2014, 5:4503.
[97] Zhang, G.; Tsujimoto, M.; Packwood, D.; Duong, N. T.; Nishiyama, Y.; Kadota, K.; Kitagawa, S.; Horike, S. J. Am. Chem. Soc. 2018, 140, 2602.
[98] Dalapati, S.; Jin, S. B.; Gao, J.; Xu, Y. H.; Nagai, A.; Jiang, D. L. J. Am. Chem. Soc. 2013, 135, 17310.
[99] Das, G.; Biswal, B. P.; Kandambeth, S.; Venkatesh, V.; Kaur, G.; Addicoat, G.; Heine, T.; Vermab, S.; Banerjee, R. Chem. Sci. 2015, 6, 3931.
[100] Kaleeswaran, D.; Vishnoi, P.; Murugavel, R. J. Mater. Chem. C 2015, 3, 7159.
[101] Lin, G. Q.; Ding, H. M.; Yuan, D. Q.; Wang, B. S.; Wang. C. J. Am. Chem. Soc. 2016, 138, 3302.
[102] Gao, Q.; Li, X.; Ning, G.-H.; Leng, K.; Tian, B. B.; Liu, C. B.; Tang, W.; Xu, H.-S.; Loh, K. P. Chem. Commun. 2018, 54, 2349.
[103] Zhang, W.; Qiu, L.-G.; Yuan, Y.-P.; Xie, A.-J.; Shen, Y.-H.; Zhu, J.-F. J. Hazard. Mater. 2012, 221, 147.
[104] Zhang, C. L.; Zhang, S. M.; Yan, Y. H.; Xia, F.; Huang, A. N.; Xian, Y. Z. ACS Appl. Mater. Interfaces 2017, 9, 13415.
[105] Jiang, K.; Wu, Y.-C.; Wu, H.-Q.; Li, S.-L.; Luo, S.-H.; Wang, Z.-Y. J. Photochem. Photobiol. A 2018, 350, 52.
[106] Guan, X. Y.; Ma, Y. C.; Li, H.; Yusran, Y.; Xue, M.; Fang, Q, R,; Yan, Y. S.; Valtchev, V.; Qiu, S. L. J. Am. Chem. Soc. 2018, 140, 4494.
[107] Ding, S. Y.; Dong, M.; Wang, Y. W.; Chen, Y. T.; Wang, H. Z.; Su, C. Y.; Wang, W. J. Am. Chem. Soc. 2016, 138, 3031.
[108] Li, Z. P.; Zhang, Y. W.; Xia, H.; Mu, Y.; Liu, X. M. Chem. Commun. 2016, 52, 6613.
[109] Wang, T.; Xue, R.; Chen, H. Q.; Shi, P. L.; Lei, X.; Wei, Y. L.; Guo, H.; Yang, W. New J. Chem. 2017, 41, 14272.
[110] Roy, A.; Mondal, S.; Halder, A.; Banerjee, A.; Ghoshal, D. Paul, A.; Malik, S. Eur. Polym. J. 2017, 93, 448.
[111] Dalapati, S.; Jin, E.; Addicoat, M.; Heine, T.; Jiang, D. L. J. Am. Chem. Soc. 2016, 138, 5797.
[112] Zhu, M.-W.; Xu, S.-Q.; Wang, X.-Z.; Chen, Y. Q.; Dai, L. Y.; Zhao, X. Chem. Commun. 2018, 54, 2308.
[113] Qian, H. L.; Dai, C.; Yang, C. X.; Yan, X. P. ACS Appl. Mater. Interfaces 2017, 9, 24999.
[114] Rao, M.; Fang, Y.; De Feyter, S.; Perepichka, D. F. J. Am. Chem. Soc. 2017, 139, 2421.
[115] Zhang, Y. W.; Shen, X. C.; Feng, X.; Xia, H.; Mu, Y.; Liu, X. M. Chem. Commun. 2016, 52, 11088.
/
〈 |
|
〉 |