Chinese Journal of Organic Chemistry >
Research Progress in Transition-Metal-Free Carbonylation Reactions
Received date: 2018-04-10
Revised date: 2018-05-28
Online published: 2018-06-07
Supported by
Project supported by the National Natural Science Foundation of China (No. 21776139), the Natural Science Foundation of Jiangsu Province (No. BK20161553), the Natural Science Foundation of Jiangsu Provincial Colleges and Universities (No. 16KJB150019), the Qing Lan Project of Nanjing Normal University and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Carbon monoxide is a readily available and cheap C1 feedstock. Carbonylation, the direct incorporation of carbon monoxide into organic molecules, is a very important and fundamental chemical transformation. In recent years, developing transition-metal-free systems for the carbonylation has attracted highly attention from many researchers. The recent rearch progress of transition-metal-free carbonylations for the synthesis of aldehydes, ketones, esters, amides, acids, anhydrides, acyl chloride, and alcohols is reviewed. And the development and application prospects for transition-metal-free carbonylation are also discussed.
Key words: carbon monoxide; carbonylation; transition-metal-free; synthetic methods
Xu Fangning , Han Wei . Research Progress in Transition-Metal-Free Carbonylation Reactions[J]. Chinese Journal of Organic Chemistry, 2018 , 38(10) : 2519 -2533 . DOI: 10.6023/cjoc201804017
[1] (a) Beller, M. Catalytic Carbonyladon Reactions, Springer-Verlag Berlin, Heidelberg, 2006.
(b) Kollα, L. Modem Carbonylation Methods, Wiley-VCH, Weinheim, 2008.
(c) Wu, X.-F.; Beller, M. Transition Metal Catalyzed Carbonylation Reactions-Carbonylative Activation of C-X Bonds, Springer-Verlag Berlin, Heidelberg, 2013.
[2] Hagen, J. Industrial Catalysis, Wiley-VCH, Weinheim, 2006.
[3] Colquhoun, H. M.; Thompson, D. J.; Twigg, M. V. Carbonylation:Direct Synthesis of Carbonyl Compounds, Plenum Press, New York, 1991.
[4] (a) Garrett, C. E.; Prasad, K. Adv. Synth. Catal. 2004, 346, 889.
(b) Welch, C. J.; Albaneze-Walker, J.; Leonard, W. R.; Biba, M.; DaSilva, J.; Henderson, D.; Laing, B.; Mathre, D. J.; Spencer, S.; Bu, X.; Wang, T. Org. Process Res. Dev. 2005, 9, 198.
(c) Liu, Y.-Y.; Xiong, J.; Wei, L. Chin. J. Org. Chem. 2017, 37, 1667(in Chinese). (刘云云, 熊进, 韦丽, 有机化学, 2017, 37, 1667.)
(d) Yuan, S.-T.; Wang, Y.-H.; Qiu, G.-Y.-S.; Liu, J.-B. Chin. J. Org. Chem. 2017, 37, 566(in Chinese). (袁斯甜, 王艳华, 邱观音生, 刘晋彪, 有机化学, 2017, 37, 566.)
[5] Ryu, I.; Kusano K.; Ogawa, A.; Kambe, N.; Sonoda, N. J. Am. Chem. Soc. 1990, 112, 1295.
[6] Ryu, I.; Kusano, K.; Masumi, N.; Yamazaki, H.; Ogawa, A.; Sonoda N. Tetrahedron Lett. 1990, 31, 6887.
[7] Ryu, I.; Hasegawa, M.; Kurihara, A.; Ogawa, A.; Tsunoi, S.; Sonoda, N. Synlett 1993, 143.
[8] Ryu, I.; Uehara, S.; Hirao, H.; Fukuyama, T. Org. Lett. 2008, 10, 1005.
[9] Tsunoi, S.; Ryu, I.; Yamasaki, S.; Fukushima, H.; Tanaka, M.; Komatsu, M.; Sonoda, N. J. Am. Chem. Soc. 1996, 118, 10670.
[10] Uenoyama, Y.; Tsukida M.; Doi, T.; Ryu, I.; Studer, A. Org. lett. 2005, 7, 2985.
[11] Nishii, Y.; Nagano, T.; Gotoh, H.; Nagase, R.; Motoyoshiya, J.; Aoyama, H.; Tanabe, Y. Org. Lett. 2007, 9, 563.
[12] Jin, F.-L.; Han, W. Chem. Commun. 2015, 51, 9133.
[13] Jin, F.-L.; Zhong, Y.-Z.; Zhang, X.; Zhang, H.-C.; Zhao, Q.; Han, W. Green Chem. 2016, 18, 2598.
[14] Han, W.; Chen, J.-J.; Jin, F.-L.; Yuan, X.-R. Synlett 2018, 369.
[15] Gu, L.-J.; Jin, C.; Liu, J.-Y. Green Chem. 2015, 17, 3733.
[16] Zhang, H.-T.; Gu, L.-J.; Huang, X.-Z.; Wang, R.; Jin, C.; Li, G.-P. Chin. Chem. Lett. 2016, 27, 256.
[17] Li, X.-G.; Liang, D.-Q.; Huang, W.-Z.; Zhou, H.-F.; Li, Z.; Wang, B.-L.; Ma, Y.-H.; Wang, H. Tetrahedron 2016, 72, 8442.
[18] Nagahara, K.; Ryu, I.; Komatsu, M.; Sonoda, N. J. Am. Chem. Soc. 1997, 119, 5465.
[19] Kreimerman, S.; Ryu, I.; Minakata, S.; Komatsu, M. Org. Lett. 2000, 2, 389.
[20] Zhang, H.; Shi, R.-Y.; Ding, A.-X.; Lu, L.-J.; Chen, B.-R.; Lei, A.-W. Angew. Chem., Int. Ed. 2012, 51, 12542.
[21] Fukuoka, S. Ind. Eng. Chem. Res. 2016, 55, 4830.
[22] Guo, W.; Lu, L.-Q.; Wang, Y.; Wang, Y.-N.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 2265.
[23] Majek, M.; Wangelin, A. J. Angew. Chem., Int. Ed. 2015, 54, 2270.
[24] Koziakov, D.; Wangelin, A. J. Org. Biomol. Chem. 2017, 15, 6715.
[25] Lu, L.-J.; Cheng, D.-Y.; Zhan, Y.-F.; Shi, R.-Y.; Chiang, C.-W.; Lei, A.-W. Chem. Commun. 2017, 53, 6852.
[26] Kim, S.; Kim, S.; Otsuka, N.; Ryu, I. Angew. Chem., Int. Ed. 2005, 44, 6183.
[27] Ryu, I.; Nagahara, K.; Kambe, N.; Sonoda, N.; Kreimerman, S.; Komatsu, M. Chem. Commun. 1998, 18, 1953.
[28] Kawamoto, T.; Sato, A.; Ryu, I. Chem.-Eur. J. 2015, 21, 14764.
[29] Lin, M.-R.; Sen, A. J. Chem. Soc., Chem. Commun. 1992, 892.
[30] Kato, S.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 1998, 63, 222.
[31] Kirillova, M. V.; Kirillov A. M.; Kuznetsov, M. L.; Silva, J. A. L.; Silva, J. J. R. F.; Pombeiro, A. J. L. Chem. Commun. 2009, 2353.
[32] Thaler, W. A. J. Am. Chem. Soc. 1966, 88, 4278.
[33] Gupta, V.; Kahne, D. Tetrahedron Lett. 1993, 34, 591.
[34] Ryu, I.; Niguma, T.; Minakata, S.; Komatsu, M. Tetrahedron Lett. 1997, 38, 7883.
[35] Kobayashi, S.; Kawamoto, T.; Uehara, S.; Fukuyama, T.; Ryu, I. Org. Lett. 2010, 12, 1548.
[36] Kawamoto, T.; Matsubara, H.; Ryu, I. Chem. Lett. 2014, 43, 1140.
[37] Kawamoto, T.; Okada, T.; Curran, D. P.; Ryu, I. Org. Lett. 2013, 15, 2144.
[38] Kawamoto, T.; Fukuyama, T.; Ryu, I. J. Am. Chem. Soc. 2012, 134, 875.
/
〈 |
|
〉 |