Chinese Journal of Organic Chemistry >
Recent Advances in Oxidative Coupling Reaction Catalyzed by Low-Valence Iodine
Received date: 2018-05-06
Revised date: 2018-05-30
Online published: 2018-06-15
Supported by
Project supported by the National Natural Science Foundation of China (No. 21502177), the Scientific and Technological Breakthrough Plan of Henan Province (No. 182102310903) and the Doctoral Research Foundation of Zhengzhou University of Light Industry (No. 2014BSJJ032).
In recent years, low-valence iodine-catalyzed oxidative coupling reaction has made rapid progress, providing an effective method for the construction of C—C, C—O, C—N, C—S, C—P and other chemical bonds. Compared with the transition metal-catalyzed oxidation coupling reaction, this protocol is metal-free under mild conditions. It avoids the high cost and toxicity of transition metal catalyst, which meets the requirements of green chemistry. Therefore, iodine catalysis has attracted much attention of the synthetic chemists. The research progress on low-valence iodine-catalyzed oxidative coupling from 2010 to now is summarized, and outlook of this field is also prospected.
Key words: low-valence iodine; oxidative coupling; chemical bond; atom economy
Yan Yizhe , Cui Chang , Li Zheng . Recent Advances in Oxidative Coupling Reaction Catalyzed by Low-Valence Iodine[J]. Chinese Journal of Organic Chemistry, 2018 , 38(10) : 2501 -2518 . DOI: 10.6023/cjoc201805016
[1] Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2013, 52, 2.
[2] Uyanik, M.; Okamoto, H.; Yasui, T.; Ishihara, K. Science 2010, 328, 1376.
[3] Zhang, J.; Zhu, D.; Yu, C.; Wan, C.; Wang, Z. Org. Lett. 2010, 12, 2841.
[4] Chen, L.; Shi, E.; Liu, Z.; Chen, S.; Wei, W.; Li, H.; Xu, K.; Wan, X. Chem.-Eur. J. 2011, 17, 4085.
[5] Rodríguez, A.; Moran, W. J. Org. Lett. 2011, 13, 2220.
[6] Wong, Y.-C.; Tseng, C.-T.; Kao, T.-T.; Yeh, Y.-C.; Shia, K.-S. Org. Lett. 2012, 14, 6024.
[7] Li, L.-T.; Huang, J.; Li, H.-Y.; Wen, L.-J.; Wang, P.; Wang, B. Chem. Commun. 2012, 48, 5187.
[8] Li, L.-T.; Li, H.-Y.; Xing, L.-J.; Wen, L.-J.; Wang, P.; Wang, B. Org. Biomol. Chem. 2012, 10, 9519.
[9] Lu, L.; Xiong, Q.; Guo, S.; He, T.; Xu, F.; Gong, J.; Zhu, Z.; Cai, H. Tetrahedron 2015, 71, 3637.
[10] Jia, Z.; Nagano, T.; Li, X.; Chan, A. S. C. Eur. J. Org. Chem. 2013, 858.
[11] Nobuta, T.; Tada, N.; Fujiya, A.; Kariya, A.; Miura, T.; Itoh, A. Org. Lett. 2013, 15, 574.
[12] Dhineshkumar, J.; Lamani, M.; Alagiri, K.; Prabhu, K. R. Org. Lett. 2013, 15, 1092.
[13] Zhang, C.; Liu, C.; Shao, Y.; Bao, X.; Wan, X. Chem.-Eur. J. 2013, 19, 17917.
[14] Huang, H.-M.; Li, Y.-J.; Ye, Q.; Yu, W.-B.; Han, L.; Jia, J.-H.; Gao, J.-R. J. Org. Chem. 2014, 79, 1084.
[15] Tang, S.; Liu, K.; Long, Y.; Gao, X.; Gao, M.; Lei A. Org. Lett. 2015, 17, 2404.
[16] Tang, S.; Liu, K.; Long, Y.; Qi, X.; Lan, Y.; Lei, A. Chem. Commun. 2015, 51, 8769.
[17] Laha, J. K.; Jethava, K. P.; Patel, S.; Patel, K. V. J. Org. Chem. 2017, 82, 76.
[18] Shi, X.; Zhang, F.; Luo, W.-K.; Yang, L. Synlett 2016, 28, 494.
[19] Sudo, Y.; Yamaguchi, E.; Itoh, A. Org. Lett. 2017, 19, 1610.
[20] Yu, Y.; Jiao, L.; Wang, J.; Wang, H.; Yu, C.; Hao, E.; Boens, N. Chem. Commun. 2017, 53, 581.
[21] Dian, L.; Zhang-Negrerie, D.; Du, Y. Adv. Synth. Catal. 2017, 359, 3090.
[22] Wei, W.; Zhang, C.; Xu, Y.; Wan, X. Chem. Commun. 2011, 47, 10827.
[23] Uyanik, M.; Hayashi, H.; Ishihara, K. Science 2014, 345, 291.
[24] Boominathan, S. S. K.; Hu, W.-P.; Senadi, G. C.; Vandavasi, J. K.; Wang, J.-J. Chem. Commun. 2014, 50, 6726.
[25] Uyanik, M.; Suzuki, D.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2011, 50, 5331.
[26] Guo, S.; Yu, J.-T.; Dai, Q.; Yang, H.; Cheng, J. Chem. Commun. 2014, 50, 6240.
[27] Gao, W.-C.; Hu, F.; Huo, Y.-M.; Chang, H.-H.; Li, X.; Wei, W.-L. Org. Lett. 2015, 17, 3914.
[28] Liang, Y.-F.; Li, X.; Wang, X.; Zou, M.; Tang, C.; Liang, Y.; Song, S.; Jiao, N. J. Am. Chem. Soc. 2016, 138, 12271.
[29] Zhang, S.; Guo, L.-N.; Wang, H.; Duan, X.-H. Org. Biomol. Chem. 2013, 11, 4308.
[30] Yu, H.; Shen, J. Org. Lett. 2014, 16, 3204.
[31] Feng, J.; Liang, S.; Chen, S.-Y.; Zhang, J.; Fu, S.-S.; Yu, X.-Q. Adv. Synth. Catal. 2012, 354, 1287.
[32] Huang, J.; Li, L.-T.; Li, H.-Y.; Husan, E.; Wang P.; Wang, B. Chem. Commun. 2012, 48, 10204.
[33] Liu, L.; Yun, L.; Wang, Z.; Fu, X.; Yan, C.-H. Tetrahedron Lett. 2013, 54, 5383.
[34] Majji, G.; Guin, S.; Gogoi, A.; Rout, S. K.; Patel, B. K. Chem. Commun. 2013, 49, 3031.
[35] Xu, J.; Zhang, P.; Li, X.; Gao, Y.; Wu, J.; Tang, G.; Zhao, Y. Adv. Synth. Catal. 2014, 356, 3331.
[36] Xiong, B.; Wang, G.; Zhou, C.; Liu, Y.; Zhang, P.; Tang, K. J. Org. Chem. 2018, 83, 993.
[37] Shi, E.; Shao, Y.; Chen, S.; Hu, H.; Liu, Z.; Zhang, J.; Wan, X. Org. Lett. 2012, 14, 3384.
[38] Froehr, T.; Sindlinger, C. P.; Kloeckner, U.; Finkbeiner, P.; Nachtsheim, B; J. Org. Lett. 2011, 13, 3754.
[39] Cai, Z.-J.; Wang, S.-Y.; Ji, S.-J. Org. Lett. 2013, 15, 5226.
[40] Beukeaw, D.; Udomsasporn, K.; Yotphan, S. J. Org. Chem. 2015, 80, 3447.
[41] Yang, Z.-Y.; Tian, T.; Du, Y.-F.; Li, S.-Y.; Chu, C.-C.; Chen, L.-Y.; Li, D.; Liu, J.-Y.; Wang, B. Chem. Commun. 2017, 53, 8050.
[42] Liu, Z.; Zhang, J.; Chen, S.; Shi, E.; Xu, Y.; Wan, X. Angew. Chem., Int. Ed. 2012, 51, 3231.
[43] Xu, K.; Hu, Y.; Zhang, S.; Zha, Z.; Wang, Z. Chem.-Eur. J. 2012, 18, 9793.
[44] Li, H.; Xie, J.; Xue, Q.; Cheng, Y.; Zhu, C. Tetrahedron Lett. 2012, 53, 6479.
[45] Gao, L.; Tang, H.; Wang, Z. Chem. Commun. 2014, 50, 4085.
[46] Tan, B.; Toda, N.; Barbas Ⅲ, C. F. Angew. Chem., Int. Ed. 2012, 51, 12538.
[47] Wang, G.; Yu, Q.-Y.; Chen, S.-Y.; Yu, X.-Q. Org. Biomol. Chem. 2014, 12, 414.
[48] Zhao, J.; Li, P.; Xia, C.; Li, F. Chem. Commun. 2014, 50, 4751.
[49] Zhang, X.; Wang, L. Green Chem. 2012, 14, 2141.
[50] Wei, W.; Shao, Y.; Hu, H.; Zhang, F.; Zhang, C.; Xu, Y.; Wan, X. J. Org. Chem. 2012, 77, 7157.
[51] Mai, W.-P.; Wang, H.-H.; Li, Z.-C.; Yuan, J.-W.; Xiao, Y.-M.; Yang, L.-R.; Mao, P.; Qu, L.-B. Chem. Commun. 2012, 48, 10117.
[52] Zhao, Q.; Miao, T.; Zhang, X.; Zhou, W.; Wang, L. Org. Biomol. Chem. 2013, 11, 1867.
[53] Lamani, M.; Prabhu, K. R. Chem.-Eur. J. 2012, 18, 14638.
[54] Tian, J.-S.; Jeffrey Ng, K. W.; Wong, J.-R.; Loh, T.-P. Angew. Chem., Int. Ed. 2012, 51, 9105.
[55] Ma, L.; Wang, X.; Yu, W.; Han, B. Chem. Commun. 2011, 47, 11333.
[56] Xie, J.; Jiang, H.; Cheng, Y.; Zhu, C. Chem. Commun. 2012, 48, 979.
[57] Yan, Y.; Zhang, Y.; Zha, Z.; Wang, Z. Org. Lett. 2013, 15, 2274.
[58] Yu, H.; Huang, W.; Zhang, F. Eur. J. Org. Chem. 2014, 3156.
[59] Ilangovan, A.; Satish, G. J. Org. Chem. 2014, 79, 4984.
[60] Yan, Y.; Zhang, Y.; Feng, C.; Zha, Z.; Wang, Z. Angew. Chem., Int. Ed. 2012, 51, 8077.
[61] Lao, Z.-Q.; Zhong, W.-H.; Lou, Q.-H.; Li, Z.-J.; Meng, X.-B. Org. Biomol. Chem. 2012, 10, 7869.
[62] Zheng, Y.; Mao, J.; Chen, J.; Rong, G.; Liu, D.; Yan, H.; Chi, Y.; Xu, X. RSC Adv. 2015, 5, 50113.
[63] Yan, Y.; Xu, Y.; Niu, B.; Xie, H.; Liu, Y. J. Org. Chem. 2015, 80, 5581.
[64] Sun, K.; Wang, X.; Li, G.; Zhu, Z.; Jiang, Y.; Xiao, B. Chem. Commun. 2014, 50, 12880.
[65] Rajamanickam, S.; Majji, G.; Santra, S. K.; Patel, B. K. Org. Lett. 2015, 17, 5586.
[66] Yan, Y.; Li, Z.; Li, H.; Cui, C.; Shi, M.; Liu, Y. Org. Lett. 2017, 19, 6228.
[67] Luo, Z.; Jiang, Z.; Jiang, W.; Lin, D. J. Org. Chem. 2018, 83, 3710.
[68] Xue, Q.; Xie, J.; Li, H.; Cheng, Y.; Zhu, C. Chem. Commun. 2013, 49, 3700.
[69] Zhao, D.; Wang, T.; Shen, Q.; Li, J.-X. Chem. Commun. 2014, 50, 4302.
[70] Zhao, D.; Shen, Q.; Li, J.-X. Adv. Synth. Catal. 2015, 357, 339.
[71] Huang, H.; Chen, W.; Xu, Y.; Li, J. Green Chem. 2015, 17, 4715.
[72] Luo, W.-K.; Shi, X.; Zhou, W.; Yang, L. Org. Lett. 2016, 18, 2036.
[73] Zhang, X.; Wang, M.; Li, P.; Wang, L. Chem. Commun. 2014, 50, 8006.
[74] Tang, S.; Wu, Y.; Liao, W.; Bai, R.; Liu, C.; Lei, A. Chem. Commun. 2014, 50, 4496.
[75] Xiao, F.; Chen, H.; Xie, H.; Chen, S.; Yang, L.; Deng, G.-J. Org. Lett. 2014, 16, 50.
[76] Siddaraju, Y.; Prabhu, K. R. J. Org. Chem. 2017, 82, 3084.
[77] Zhao, J.; Huang, H.; Wu, W.; Chen, H.; Jiang, H. Org. Lett. 2013, 15, 2604.
[78] Liao, Y.; Jiang, P.; Chen, S.; Qi, H.; Deng, G.-J. Green Chem. 2013, 15, 3302.
[79] Cao, H.; Yuan, J.; Liu, C.; Hu, X.; Lei, A. RSC Adv. 2015, 5, 41493.
[80] Jiang, Y.; Zou, J.-X.; Huang, L.-T.; Peng, X.; Deng, J.-D.; Zhu, L.-Q.; Yang, Y.-H.; Feng, Y.-Y.; Zhang, X.-Y.; Wang, Z. Org. Biomol. Chem. 2018, 16, 1641.
[81] Yuan, J.; Ma, X.; Yi, H.; Liu, C.; Lei, A. Chem. Commun. 2014, 50, 14386.
[82] Xiao, F.; Chen, S.; Chen, Y.; Huang, H.; Deng, G.-J. Chem. Commun. 2015, 51, 652.
[83] Li, X.; Xu, X.; Zhou, C. Chem. Commun. 2012, 48, 12240.
[84] Wang, Q.; Xu, Z. Chin. J. Org. Chem. 2013, 33, 2430(in Chinese). (王倩, 徐洲, 有机化学, 2013, 33, 2430.)
[85] Sun, K.; Lv, Y.; Chen, Y.; Zhou, T.; Xing, Y.; Wang, X. Org. Biomol. Chem. 2017, 15, 4464.
[86] Dhineshkumar, J.; Prabhu, K. R. Org. Lett. 2013, 15, 6062.
[87] Wang, J.; Huang, X.; Ni, Z.; Wang, S.; Wu, J.; Pan, Y. Green Chem. 2015, 17, 314.
[88] Yuan, J.; Liu, C.; Lei, A. Org. Chem. Front. 2015, 2, 677.
[89] Zhang, J.; Jiang, J.; Li, Y.; Wan, X. J. Org. Chem. 2013, 78, 11366.
[90] Yan, Y.; Niu, B.; Xu, K.; Yu, J.; Zhi, H.; Liu, Y. Adv. Synth. Catal. 2016, 358, 212.
[91] Feng, J.-B.; Wu, X.-F. Org. Biomol. Chem. 2016, 14, 6951.
/
〈 |
|
〉 |