Chinese Journal of Organic Chemistry >
Selective Synthesis of Quaternary Carbon Propargylamines from Amines, Alkynes, and Alkynes under Neat Condition
Received date: 2018-05-16
Revised date: 2018-06-08
Online published: 2018-06-15
Supported by
Project supported by the National Natural Science Foundation of China (No. 21877034).
An efficient and facile method has been developed for the synthesis of quaternary carbon propargylamines via a one-pot tandem reaction of amines, alkynes, and alkynes under neat condition. Both aliphatic and aromatic terminal alkynes are well compatible with the established reaction, with respect to aliphatic alkynes, AgOTf was used as catalyst for the Markovnikov amine-alkyne-alkyne coupling process. When aromatic alkynes were used as substrates, the reaction was promoted by CuBr2/Zn (OTf)2 co-catalytic system. This tandem reaction exhibits excellent atom efficiency and provides an attractive approach to a diverse range of quaternary carbon propargylamines.
Key words: propargylamines; quaternary carbon; alkynes; neat condition; green organic synthesis
Wang Zheng , Yang Liu , Liu Huilan , Bao Wenhu , Tan Yingzhi , Wang Ming , Tang Zilong , He Weimin . Selective Synthesis of Quaternary Carbon Propargylamines from Amines, Alkynes, and Alkynes under Neat Condition[J]. Chinese Journal of Organic Chemistry, 2018 , 38(10) : 2639 -2647 . DOI: 10.6023/cjoc201805033
[1] (a) Anastas, P. T.; Warner, J. C. Green Chemistry:Theory and Practice, Oxford University Press, New York, 2000.
(b) Trost, B. M. Science 1991, 254, 1471.
(c) Trost, B. M. Angew. Chem., Int. Ed. 1995, 34, 259.
(d) Trost, B. M. Acc. Chem. Res. 2002, 35, 695.
[2] (a) Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675.
(b) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673.
(c) Doye, S. Synlett 2004, 1653.
(d) Roesky, P. W.; Müller, T. E. Angew. Chem., Int. Ed. 2003, 42, 2708.
(e) Pohlki, F.; Doye, S. Chem. Soc. Rev. 2003, 32, 104.
(f) Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.
[3] (a) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395.
(b) Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5, 3349.
(c) Cui, H.; Wei, W.; Yang, D.; Zhang, J.; Xu, Z.; Wen, J.; Wang, H. RSC Adv. 2015, 5, 84657.
(d) Huang, C.; Zeng, Y.; Cheng, H.; Hu, A.; Liu, L.; Xiao, Y.; Zhang, J. Org. Lett, 2017, 19, 4968.
(e) Zhou, X.; Huang, C.; Zeng, Y.; Xiong, J.; Xiao, Y.; Zhang, J. Chem. Commun. 2017, 53, 1084.
[4] (a) Liu, X. Y.; Che, C.-M. Angew. Chem., Int. Ed. 2008, 47, 3805.
(b) Liu, X.-Y.; Che, C.-M. Angew. Chem., Int. Ed. 2009, 48, 2367.
[5] Luo, Y.; Li, Z.; Li, C.-J. Org. Lett. 2005, 7, 2675.
[6] (a) Zhou, L.; Shuai, Q.; Jiang, H. F.; Li, C.-J. Chem.-Eur. J. 2009, 15, 11668.
(b) Zhou, L.; Bohle, D. S.; Jiang, H. F.; Li, C.-J. Synlett 2009, 937.
[7] Han, J. B.; Xu, B.; Hammond, G. B. J. Am. Chem. Soc. 2010, 132, 916.
[8] (a) Xie, L.; Wu, Y.; Yi, W.; Zhu, L.; Xiang, J.; He, W. J. Org. Chem. 2013, 78, 9190.
(b) Li, L.; Xie, L.; Wang, F.; He, W.; Xiang, J. Chin. J. Org. Chem. 2014, 34, 1864.
(c) Xie, L.; Yuan, R.; Wang, R.; Peng, Z.; Xiang, J.; He, W. Eur. J. Org. Chem. 2014, 2668.
(d) Xiang, J.; Yuan, R.; Wang, R.; Yi, N.; Lu, L.; Zou, H.; He, W. J. Org. Chem. 2014, 79, 11378.
(e) Xiang, J.; Yi, N.; Wang, R.; Lu, L.; Zou, H.; Pan, Y.; He, W. Tetrahedron 2015, 71, 694.
(f) Yi, N.; Wang, R.; Zou, H.; He, W.; Fu, W.; He, W. J. Org. Chem. 2015, 80, 5023.
(g) Zou, H.; He, W.; Dong, Q.; Wang, R.; Yi, N.; Jiang, J.; Pen, D.; He, W. Eur. J. Org. Chem. 2016, 116.
(h) Li, W.; Yin, G.; Huang, L.; Xiao, Y.; Fu, Z.; Xin, X.; Liu, F.; Li, Z.; He, W. Green Chem. 2016, 18, 4879.
(i) Wu, C.; Yang, P.; Fu, Z.; Peng, Y.; Wang, X.; Zhang, Z.; Liu, F.; Li, W.; Li, Z.; He, W. J. Org. Chem. 2016, 81, 10664.
(j) Wu, C.; Xin, X.; Fu, Z.-M.; Xie, L.-Y.; Liu, K.-J.; Wang, Z.; Li, W.; Yuan, Z.-H.; He, W.-M. Green Chem. 2017, 19, 1983.
(k) Wu, C.; Wang, Z.; Hu, Z.; Zeng, F.; Zhang, X.-Y.; Cao, Z.; Tang, Z.; He, W.-M.; Xu, X.-H., Org. Biomol. Chem. 2018, 16, 3177.
(l) Wu, C.; Lu, L.-H.; Peng, A.-Z.; Jia, G.-K.; Peng, C.; Cao, Z.; Tang, Z.; He, W.-M.; Xu, X. Green Chem. 2018, 3683.
[9] (a) Xie, L.-Y.; Duan, Y.; Lu, L.-H.; Li, Y.-J.; Peng, S.; Wu, C.; Liu, K.-J.; Wang, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2017, 5, 10407.
(b) Xie, L.-Y.; Peng, S.; Lu, L.-H.; Hu, J.; Bao, W.-H.; Zeng, F.; Tang, Z.; Xu, X.; He, W.-M. ACS Sustainable Chem. Eng. 2018, 6, 7989.
(c) Liu, K.-J.; Fu, Y.-L.; Xie, L.-Y.; Wu, C.; He, W.-B.; Peng, S.; Wang, Z.; Bao, W.-H.; Cao, Z.; Xu, X.; He, W.-M. ACS Sustainable Chem. Eng. 2018, 6, 4916.
(d) Tan, J.-X.; Guo, Y.; Zeng, F.; Chen, G.-R.; Xie, L.-Y.; He, W.-M. Chin. J. Org. Chem. 2018, 38, 1740.
(e) Xie, L.-Y.; Li, Y.-J.; Qu, J.; Duan, Y.; Hu, J.; Liu, K.-J.; Cao, Z.; He, W.-M. Green Chem. 2017, 19, 5642.
(f) Liu, K.-J.; Jiang, S.; Lu, L.-H.; Tang, L.-L.; Tang, S.-S.; Tang, H.-S.; Tang, Z.; He, W.-M.; Xu, X. Green Chem. 2018, 3038.
(g) Xie, L.-Y.; Qu, J.; Peng, S.; Liu, K.-J.; Wang, Z.; Ding, M.-H.; Wang, Y.; Cao, Z.; He, W.-M. Green Chem. 2018, 20, 760.
(h) Wu, C.; Wang, J.; Zhang, X.-Y.; Jia, G.-K.; Cao, Z.; Tang, Z.; Yu, X., Xu, X.-H.; He, W.-M. Org. Biomol. Chem. 2018, 5050.
[10] (a) Kauffman, G. S.; Harris, G. D.; Dorow, R. L.; Stone, B. R. P.; Parsons, R. L. Jr., Pesti, J. A.; Magnus, N. A.; Fortunak, J. M.; Confalone, P. N.; Nugent, W. A. Org. Lett. 2000, 2, 3119.
(b) Huffman, M. A.; Yasuda, N.; DeCamp, A. E.; Grabowski, E. J. J. J. Org. Chem. 1995, 60, 1590.
(c) Nakamura, H.; Kamakura, T.; Ishikura, M.; Biellmann, J.-F. J. Am. Chem. Soc. 2004, 126, 5958.
(d) Wen, J.; Wei, W.; Xue, S.; Yang, D.; Lou, Y.; Gao, C.; Wang, H. J. Org. Chem. 2015, 80, 4966.
(e) Wei, W.; Cui, H.; Yang, D.; Yue, H.; He, C.; Zhang, Y.; Wang, H. Green Chem. 2017, 19, 5608.
[11] (a) Kopka, I. E.; Fataftah, Z. A.; Rathke, M. W. J. Org. Chem. 1980, 45, 4616.
(b) Imada, Y.; Yuassa, M.; Nakamura, I.; Murahashi, S. I.; J. Org. Chem. 1994, 59, 2282.
(c) Czernecki, S.; Valery, J. M. J. Carbohydr. Chem. 1990, 9, 767.
(d) Tubery, F.; Grierson, D. S.; Husson, H. P. Tetrahedron Lett. 1987, 28, 6457.
(e) Jung, M. E.; Huang, A. Org. Lett. 2000, 2, 2659.
[12] (a) Wei, C. M.; Li, C.-J. J. Am. Chem. Soc. 2002, 124, 5638.
(b) Wei, C. M.; Li, C.-J. J. Am. Chem. Soc. 2003, 125, 9584.
(c) Wei, C. M.; Li, Z. G.; Li, C.-J. Org. Lett. 2003, 5, 4473.
(d) Wei, C. M.; Mague, J. T.; Li, C.-J. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5749.
(e) Gommermann, N.; Knochel, P. Chem.-Eur. J. 2006, 12, 4380.
(f) Li, Z. P.; Li, C.-J. J. Am. Chem. Soc. 2004, 126, 11810.
[13] (a) Liu, X.-Y.; Che, C.-M. Angew. Chem., Int. Ed. 2008, 47, 3805.
(b) Pereshivko, O. P.; Peshkov, V. A.; Van der Eycken, E. V. Org. Lett. 2010, 12, 2638.
(c) Aliaga, M. J.; Ramón, D. J.; Yus, M. Org. Biomol. Chem. 2010, 8, 43.
(d) Biyikal, M.; Porta, M.; Roesky, P. W.; Blechert, S. Adv. Synth. Catal. 2010, 352, 1870.
(e) Pierce, C. J.; Yoo, H.; Larsen C. H. Adv. Synth. Catal. 2013, 355, 3586.
(f) Palchark, Z. L.; Lussier, D. J.; Pierce, C. J.; Yoo, H.; Larsen, C. H. Adv. Synth. Catal. 2015, 357, 539.
[14] (a) Uchimaru, Y. Chem. Commun. 1999, 1133.
(b) Pohlki, F.; Doye, S. Chem. Soc. Rev. 2003, 32, 104.
(c) Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M.; Chem. Rev. 2008, 108, 3795.
[15] (a) Koradin, C.; Polborn, K.; Knochel, P. Angew. Chem. Int. Ed. 2002, 41, 2535.
(b) Koradin, C.; Gommermann, N.; Polborn, K.; Knochel, P. Chem.-Eur. J. 2003, 9, 2797.
(c) Li, Y.; Cao, X.; Liu, Y.; Wan, J-P. Org. Biomol. Chem. 2017, 15, 9585.
(d) Shen, W-B.; Sun, Q.; Li, L.; Liu, X.; Zhou, B.; Yan, J-Z.; Lu, X.; Ye, L-W. Nat. Commun. 2017, 8, 1748.
(e) Li, L.; Tan, T-D.; Zhang, Y-Q.; Liu, X.; Ye, L-W. Org. Biomol. Chem. 2017, 15, 8483.
[16] (a) Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. ChemSusChem 2008, 1, 333.
(b) Biyikal, M.; Porta, M.; Roesky, P. W.; Blechert, S. Adv. Synth. Catal. 2010, 352, 1870.
[17] (a) Aschwanden, P.; Frantz, D. E.; Carreira, E. M. Org. Lett. 2000, 2, 2331.
(b) Lang, H.; Mansilla, N.; Rheinwald, G. Organometallics 2001, 20, 1592.
/
〈 |
|
〉 |