Articles

Phosphoryl Protecting Group Enabled Facile Synthesis of Unsymmetrical 1,3-Diynes by Selective Hay Coupling

  • Peng Lifen ,
  • Peng Chao ,
  • Wang Ming ,
  • Tang Zilong ,
  • Jiao Yinchun ,
  • Xu Xinhua
Expand
  • a Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201;
    b State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082

Received date: 2018-05-02

  Revised date: 2018-05-30

  Online published: 2018-07-05

Supported by

Project supported by the National Natural Science Foundation of China (No. 21402048), the Natural Science Fund Youth Project of Hunan Province (No. 2018JJ3145), the General Project of Hunan Education Department (No. 17C0629) and the Doctoral Foundation of Hunan University of Science and Technology (No. E51693).

Abstract

A selective Hay coupling reaction of aromatic terminal acetylenes and monophosphoryl-protected diynes was developed. The polarity of Ph2P(O) realized facile isolation of the desired unsymmetrical 1,3-diynes from by-products. The low reactivity of monophosphoryl-protected diynes reduced the oxidative homocoupling of itself and enhanced the yields of desired products. A number of aromatic terminal acetylenes and monophosphoryl-protected diynes were tolerated in this reaction, and all the corresponding unsymmetrical 1,3-diynes could be obtained in moderate to good yields. The unsymmetrical 1,3-diynes could be applied to synthesize unsymmetrical yne-diynes and cyclic polyynes.

Cite this article

Peng Lifen , Peng Chao , Wang Ming , Tang Zilong , Jiao Yinchun , Xu Xinhua . Phosphoryl Protecting Group Enabled Facile Synthesis of Unsymmetrical 1,3-Diynes by Selective Hay Coupling[J]. Chinese Journal of Organic Chemistry, 2018 , 38(11) : 3048 -3055 . DOI: 10.6023/cjoc201805009

References

[1] Stang, P. J.; Diederich, F. Modern Acetylene Chemistry, VCH, Weinheim, 1995.
[2] Shi, W.; Lei, A.-W. Tetrahedron Lett. 2014, 55, 2763.
[3] (a) Ito, A.; Cui, B.; Chavez, D.; Chai, H. B.; Shin,Y. G.; Kawanishi, K.; Kardono, L. B.; Riswan, S.; Farnsworth, N. R.; Cordell, G. A.; Pezzuto, J. M.; Kinghorn, A. D. J. Nat. Prod. 2001, 64, 246.
(b) Evano, G.; Blanchard, N. Copper-Mediated Cross-Coupling Reactions, John Wiley & Sons, Inc., Hoboken, NJ, 2014.
(c) Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem. Int. Ed. 2000, 39, 2632.
[4] Guo, L.; Song, L.; Wang, Z.; Zhao, W.; Mao, W.; Yin, M. Chem. Biol. Interact. 2009, 181, 138.
[5] (a) Katano, M.; Yamamoto, H.; Matsunaga, H.; Mori, M.; Takata, K.; Nakamura, M. Gan to Kagaku Ryoho 1990, 17, 1045.
(b) Matsunaga, H.; Saita, T.; Naguo, F.; Mori, M.; Katano, M. Cancer Chemother. Pharmacol. 1995, 35, 291.
[6] (a) Yadav, J. S.; Kumaraswamy, B.; Sathish Reddy, A.; Srihari, P.; Janakiram, R. V.; Kalivendi, S. V. J. Org. Chem. 2011, 76, 2568.
(b) Srihari, P.; Sathish Reddy, A.; Deepthi, Y.; Kalivendi, S. Tetrahedron Lett. 2013, 54, 5616.
[7] Gangadhar, P.; Reddy, S. A.; Srihari, P. Tetrahedron 2016, 72, 5807.
[8] (a) Fang, J.-K.; Sun, T.-X.; Tian, Y.; Zhang, Y.-J.; Jin, C.-F.; Xu, Z.-M.; Hu, X.-Y.; Wang, H.-B. Mater. Chem. Phys. 2017, 195, 1.
(b) Peng, L.-F.; Wang, B.-H.; Wang, M.; Tang, Z.-L.; Jiang, Y.-Z.; Jiao, Y.-C.; Xu, X.-H. J. Chem. Res. 2018, 42, 235.
(c) Peng, L.-F.; Lei, J.-Y.; Wu, L.; Tang, Z.-L.; Luo, Z.-P.; Jiao, Y.-C.; Xu, X.-H. J. Chem. Res. 2018, 42, 271.
[9] Pati, A. K.; Mohapatra, M.; Ghosh, P.; Gharpure, S. J.; Mishra, A. K. J. Phys. Chem. A 2013, 117, 6548.
[10] (a) Wan,W. B.; Brand, S. C.; Pak, J. J.; Haley, M. M. Chem.-Eur. J. 2005, 6, 2044.
(b) Peng, L.-F.; Jiang, J.; Peng, C.; Dai, N.-N.; Tang, Z.-L.; Jiao, Y.-C.; Chen, J.-Y.; Xu, X.-H. Chin. J. Org. Chem. 2017, 37, 3013(in Chinese). (彭丽芬, 蒋娟, 彭超, 代宁宁, 唐子龙, 焦银春, 陈锦杨, 许新华, 有机化学, 2017, 37, 3013.)
(c) Peng, L.-F.; Zhang, S.-W.; Wang, B.-H.; Xun, M.-S.; Tang, Z.-L.; Jiao, Y.-C.; Xu, X.-H. Chin. J. Org. Chem. 2018, 38, 519(in Chinese). (彭丽芬, 张思维, 王丙昊, 寻梦硕, 唐子龙, 焦银春, 许新华, 有机化学, 2018, 38, 519.)
[11] (a) Li, Y.-N.; Wang, J.-L.; He, L.-N. Tetrahedron Lett. 2011, 52, 3485.
(b) Yadav, J. S.; Reddy, B. V. S.; Reddy, K. B.; Gayathri, K. U.; Prasad, A. R. Tetrahedron Lett. 2003, 44, 6493.
[12] (a) Hay, A. J. Org. Chem. 1960, 25, 1275.
(b) Abe, H.; Kurokawa, H.; Chida, Y.; Inouye, M. J. Org. Chem. 2011, 76, 309.
[13] (a) Hay, A. S. J. Org. Chem. 1962, 27, 3320.
(b) Montierth, J. M.; DeMario, D. R.; Kurth, M. J.; Schore, N. E. Tetrahedron 1998, 54, 11741.
[14] (a) Bandyopadhyay, A.; Varghese, B.; Sankararaman, S. J. Org. Chem. 2006, 71, 4544.
(b) Cahiez, G.; Moyeux, A. Chem. Rev. 2010, 110, 1435.
[15] (a) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234.
(b) Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem., Int. Ed. 2000, 39, 2632.
(c) Stefani, H. A.; Guarezemini, A. S.; Cella, R. Tetrahedron 2010, 66, 7871.
(d) Jia, X.; Yin, K.; Li, C.; Li, J.; Bian, H. Green Chem. 2011, 13, 2175.
(e) Kamata, K.; Yamaguchi, S.; Kotani, M.; Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed. 2008, 47, 2407.
(f) Crowley, J. D.; Goldup, S. M.; Gowans, N. D.; Leigh, D. A.; Ronaldson, V. E.; Slawin, A. M. Z. J. Am. Chem. Soc. 2010, 132, 6243.
(g) Gao, H.-Y.; Wagner, H.; Zhong, D.; Franke, J.-H.; Studer, A.; Fuchs, H. Angew. Chem., Int. Ed. 2013, 52, 4024.
(h) Zhang, S.; Liu, X.; Wang, T. Adv. Synth. Catal. 2011, 353, 1463.
(i) Balamurugan, R.; Naveen, N.; Manojveer, S.; Nama, M. V. Aust. J. Chem. 2011, 64, 567.
(j) Wong, W.-Y.; Lu, G.-L.; Choi, K.-H.; Guo, Y.-H. J. Organomet. Chem. 2005, 690, 177.
(k) Navale, B. S.; Bhat, R. G. RSC Adv. 2013, 3, 5220.
(l) Liu, Y.; Wang, C.; Wang, X.; Wan, J.-P. Tetrahedron Lett. 2013, 54, 3953.
[16] (a) Yin, W.; He, C.; Chen, M.; Zhang, H.; Lei, A. Org. Lett. 2009, 11, 709.
(b) Suarez, J. R.; Collado-Sanz, D.; Cardenas, D. J.; Chiara, J. L. J. Org. Chem. 2015, 80, 1098.
(c) Balaraman, K.; Kesavan, V. Synthesis 2010, 3461.
(d) Lampkowski, J. S.; Durham, C. E.; Padilla, M. S.; Young, D. D. Org. Biomol. Chem. 2015, 13, 424.
[17] (a) Cadiot, P.; Chodkiewicz, W. Chemistry of Acetylenes, Marcel Dekker, New York, 1969.
(b) Sindhu, K. S.; Thankachan, A. P.; Sajitha, P. S.; Anilkumar, G. Org. Biomol. Chem. 2015, 13, 6891.
(c) Yu, M.; Pan, D.; Jia, W.; Chen, W.; Jiao, N. Tetrahedron Lett. 2010, 51, 1287.
[18] (a) Peng, H.-H.; Xi, Y.-M.; Ronaghi, N.; Dong, B.-L.; Akhmedov, N. G.; Shi, X.-D. J. Am. Chem. Soc. 2014, 136, 13174.
(b) Vilhanová, B.; Václavík, J.; Artiglia, L.; Ranocchiari, M.; Togni, A.; Bokhoven, J. A. ACS Catal. 2017, 7, 3414.
[19] Lampkowski, J. S.; Uthappa, D. M.; Halonski, J. F.; Maza, J. C.; Young, D. D. J. Org. Chem. 2016, 81, 12520.
[20] Su, L.-B.; Dong, J.-Y.; Liu, L.; Sun, M.-L.; Qiu, R.-H.; Zhou, Y.-B.; Yin, S.-F. J. Am. Chem. Soc. 2016, 138, 12348.
[21] Wan, J.-P.; Cao, S.; Jing, Y.-F. Appl. Organomet. Chem. 2014, 28, 631.
[22] Yang, X.; Matsuo, D.; Suzuma, Y.; Fang, J.-K.; Xu, F.; Orita, A.; Otera, J. Synlett 2011, 2402.
[23] Peng, L.-F.; Xu, F.; Suzuma, Y.; Orita, A.; Otera, J. J. Org. Chem. 2013, 78, 12802.
[24] Peng, L.-F.; Xu, F.; Shinohara, K.; Orita, A.; Otera, J. Chem. Lett. 2014, 43, 1610.
[25] Peng, L.-F.; Xu, F.; Shinohara, K.; Orita, A.; Otera, J. Org. Chem. Front. 2015, 2, 248.

Outlines

/