Chinese Journal of Organic Chemistry >
State of the Art in Germanium-Containing Aromatic Systems
Received date: 2018-05-26
Revised date: 2018-06-20
Online published: 2018-07-05
Supported by
Project supported by the Knowledge Innovation Program of Hubei Provience (Natural Science Foundation) (No. 2018CFB347) and the Youths Science Foundation (No. K201832) of Wuhan Institute of Technology.
Germanium-containing conjugated compounds are regarded as powerful candidates for the development of optoelectronic material. As a subclass of germanium-containing conjugated compounds and a crucial type of the heavy analogues of aromatic compounds, germanium-containing aromatic hydrocarbons (Ge-AHs) have attracted much attention and developed rapidly in recent days. According to the charge of the Ge-AHs, these species were categorized into three subclasses:neutral, anionic and cationic species. Herein, the synthetic methodology together with the reactivity of these reported Ge-AHs is summarized and the parameters used for the evaluation of the aromaticity of these compounds is highlighted. Ge-AHs and aromatic hydrocarbons share similar structural and magnetic properties. However, their major reactivity is quite different. This review will not only inspire the discovery of new structures and reactivities of Ge-Ahs, but also help to form a deeper understanding of the concept of aromaticy.
Key words: germanium; aromaticity; main group chemistry
Cui Jingjing . State of the Art in Germanium-Containing Aromatic Systems[J]. Chinese Journal of Organic Chemistry, 2018 , 38(11) : 2888 -2895 . DOI: 10.6023/cjoc201805049
[1] (a) Toal, S. J.; Trogler, W. C. J. Mater. Chem. 2006, 16, 2871.
(b) Amb, C. M.; Chen, S.; Graham, K. R.; Subbiah, J.; Small, C. E.; So, F.; Reynolds, J. R. J. Am. Chem. Soc. 2011, 133, 10062.
(c) Shynkaruk, O.; He, G.; McDonald, R.; Ferguson, M. J.; Rivard, E. Chem. Eur. J. 2015, 22, 248.
(d) Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L. Chem. Rev. 2015, 115, 12666.
(e) Ohshita, J.; Miyazaki, M.; Nakashima, M.; Tanaka, D.; Ooyama, Y.; Sasaki, T.; Kunugi, Y.; Morihara, Y. RSC Adv. 2015, 5, 12686.
(f) Parke, S. M.; Boone, M. P.; Rivard, E. Chem. Commun. 2016, 52, 9485.
[2] (a) Elliott, G. P.; Roper, W. R.; Waters, J. M. J. Chem. Soc., Chem. Commun. 1982, 811.
(b) Zhu, C.; Li, S.; Luo, M.; Zhou, X.; Niu, Y.; Lin, M.; Zhu, J.; Cao, Z.; Lu, X.; Wen, T.; Xie, Z.; Schleyer, P. V. R.; Xia, H. Nat. Chem. 2013, 5, 698.
(c) Cao, X.-Y.; Zhao, Q.; Lin, Z.; Xia, H. Acc. Chem. Res. 2014, 47, 341.
(d) Roy, S.; Rosenthal, U.; Jemmis, E. D. Acc. Chem. Res. 2014, 47, 2917.
(e) Fernandez, I.; Frenking, G.; Merino, G. Chem. Soc. Rev. 2015, 44, 6452.
(f) Wei, J.; Zhang, Y.; Zhang, W.-X.; Xi, Z. Angew. Chem., Int. Ed. 2015, 54, 9986.
(g) Wei, J.; Zhang, Y.; Chi, Y.; Liu, L.; Zhang, W.-X.; Xi, Z. J. Am. Chem. Soc. 2016, 138, 60.
(h) Zhang, Y.; Wei, J.; Chi, Y.; Zhang, X.; Zhang, W.-X.; Xi, Z. J. Am. Chem. Soc. 2017, 139, 5039.
(i) Zhang, Y.; Chi, Y.; Wei, J.; Yang, Q.; Yang, Z.; Chen, H.; Yang, R.; Zhang, W.-X.; Xi, Z. Organometallics 2017, 36, 2982.
(j) Frogley, B. J.; Wright, L. J. Chem. Eur. J. 2018, 24, 2025.
[3] (a) Lee, V. Y.; Sekiguchi, A. Chem. Soc. Rev. 2008, 37, 1652.
(b) Lee, V. Y.; Sekiguchi, A. In Organometallic Compounds of Low-Coordinate Si, Ge, Sn and Pb, John Wiley & Sons, Ltd, 2010, p. 335.
(c) Tokitoh, N.; Inamura, K.; Mizuhata, Y. Phosphorus Sulfur Silicon Relat. Elem. 2011, 186, 1323.
(d) Wei, J.; Zhang, W.-X.; Xi, Z. Chem. Sci. 2018, 9, 560.
(e) Saito, M. Acc. Chem. Res. 2018, 51, 160.
[4] Hua, Y. H.; Zhang, H.; Xia, H. P. Chin. J. Org. Chem. 2018, 38, 11(in Chinese). (华煜晖, 张弘, 夏海平, 有机化学, 2018, 38, 11.)
[5] Izawa, M.; Kim, T.; Ishida, S. i.; Tanaka, T.; Mori, T.; Kim, D.; Osuka, A. Angew. Chem., Int. Ed. 2017, 56, 3982.
[6] Märkl, G.; Rudnick, D. Tetrahedron Lett. 1980, 21, 1405.
[7] Märkl, G.; Rudnick, D.; Schulz, R.; Schweig, A. Angew. Chem., Int. Ed. 1982, 21, 221.
[8] Nakata, N.; Takeda, N.; Tokitoh, N. Organometallics 2001, 20, 5507.
[9] Mizuhata, Y.; Sasamori, T.; Nagahora, N.; Watanabe, Y.; Furukawa, Y.; Tokitoh, N. Dalton Trans. 2008, 4409.
[10] (a) Nakata, N.; Takeda, N.; Tokitoh, N. J. Am. Chem. Soc. 2002, 124, 6914.
(b) Nakata, N.; Takeda, N.; Tokitoh, N. J. Organomet. Chem. 2003, 672, 66.
[11] Sasamori, T.; Inamura, K.; Hoshino, W.; Nakata, N.; Mizuhata, Y.; Watanabe, Y.; Furukawa, Y.; Tokitoh, N. Organometallics 2006, 25, 3533.
[12] Tokitoh, N. Acc. Chem. Res. 2004, 37, 86.
[13] (a) Tokitoh, N.; Nakata, N.; Shinohara, A.; Takeda, N.; Sasamori, T. Chem. Eur. J. 2007, 13, 1856.
(b) Mizuhata, Y.; Inamura, K.; Tokitoh, N. Can. J. Chem. 2014, 92, 441.
[14] (a) Nakata, N.; Takeda, N.; Tokitoh, N. Chem. Lett. 2002, 31, 818.
(b) Nakata, N.; Takeda, N.; Tokitoh, N. Angew. Chem., Int. Ed. 2003, 42, 115.
[15] Nakata, N.; Takeda, N.; Tokitoh, N. Organometallics 2003, 22, 481.
[16] (a) Sasamori, T.; Sugahara, T.; Agou, T.; Guo, J.-D.; Nagase, S.; Streubel, R.; Tokitoh, N. Organometallics 2015, 34, 2106.
(b) Sugahara, T.; Guo, J.-D.; Sasamori, T.; Karatsu, Y.; Furukawa, Y.; Ferao, A. E.; Nagase, S.; Tokitoh, N. Bull. Chem. Soc. Jpn. 2016, 89, 1375.
[17] Sugahara, T.; Guo, J. D.; Sasamori, T.; Nagase, S.; Tokitoh, N. Angew. Chem., Int. Ed. 2018, 57, 3499.
[18] Boehme, C.; Frenking, G. J. Am. Chem. Soc. 1996, 118, 2039.
[19] Tuononen, H. M.; Roesler, R.; Dutton, J. L.; Ragogna, P. J. Inorg. Chem. 2007, 46, 10693.
[20] Leites, L. A.; Bukalov, S. S.; Aysin, R. R.; Piskunov, A. V.; Chegerev, M. G.; Cherkasov, V. K.; Zabula, A. V.; West, R. Organometallics 2015, 34, 2278.
[21] Meller, A.; Pfeiffer, J.; Noltemeyer, M. Z. Anorg. Allg. Chem. 1989, 572, 145.
[22] Herrmann, W. A.; Denk, M.; Behm, J.; Scherer, W.; Klingan, F. R.; Bock, H.; Solouki, B.; Wagner, M. Angew. Chem., Int. Ed. 1992, 31, 1485.
[23] Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, S1
[24] Leites, L. A.; Bukalov, S. S.; Zabula, A. V.; Garbuzova, I. A.; Moser, D. F.; West, R. J. Am. Chem. Soc. 2004, 126, 4114.
[25] Guha, A. K.; Sarmah, S.; Phukan, A. K. Dalton Trans. 2010, 39, 7374.
[26] (a) Aysin, R. R.; Leites, L. A.; Bukalov, S. S.; Zabula, A. V.; West, R. Inorg. Chem. 2016, 55, 4698.
(b) Aysin, R. R.; Bukalov, S. S.; Leites, L. A.; Zabula, A. V. Dalton Trans. 2017, 46, 8774.
[27] Kühl, O.; Lönnecke, P.; Heinicke, J. Inorg. Chem. 2003, 42, 2836.
[28] Blom, B.; Said, A.; Szilvási, T.; Menezes, P. W.; Tan, G.; Baumgartner, J.; Driess, M. Inorg. Chem. 2015, 54, 8840.
[29] Tumanskii, B.; Pine, P.; Apeloig, Y.; Hill, N. J.; West, R. J. Am. Chem. Soc. 2005, 127, 8248.
[30] Naka, A.; Hill, N. J.; West, R. Organometallics 2004, 23, 6330.
[31] Su, B.; Ganguly, R.; Li, Y.; Kinjo, R. Angew. Chem., Int. Ed. 2014, 53, 13106.
[32] Su, B.; Ganguly, R.; Li, Y.; Kinjo, R. Chem. Commun. 2016, 52, 613.
[33] Freeman, W. P.; Tilley, T. D.; Rheingold, A. L.; Ostrander, R. L.; Angew. Chem., Int. Ed. Engl. 1993, 32, 1744.
[34] Freeman, W. P.; Tilley, T. D.; LiableSands, L. M.; Rheingold, A. L. J. Am. Chem. Soc. 1996, 118, 10457.
[35] Goldfuss, B.; Schleyer, P. V. R. Organometallics 1997, 16, 1543.
[36] Freeman, W. P.; Tilley, T. D.; Rheingold, A. L.; Ostrander, R. L. Angew. Chem., Int. Ed. 1993, 32, 1744.
[37] Dysard, J. M.; Tilley, T. D. J. Am. Chem. Soc. 2000, 122, 3097.
[38] (a) Dysard, J. M.; Tilley, T. D. J. Am. Chem. Soc. 1998, 120, 8245.
(b) Freeman, W. P.; Dysard, J. M.; Tilley, T. D.; Rheingold, A. L. Organometallics 2002, 21, 1734.
[39] Dysard, J. M.; Tilley, T. D. Organometallics 2000, 19, 2671.
[40] (a) Lee, V. Y.; Kato, R.; Ichinohe, M.; Sekiguchi, A. J. Am. Chem. Soc. 2005, 127, 13142.
(b) Lee, V. Y.; Takanashi, K.; Kato, R.; Matsuno, T.; Ichinohe, M.; Sekiguchi, A. J. Organomet. Chem. 2007, 692, 2800.
[41] (a) Lee, V. Y.; Kato, R.; Sekiguchi, A.; Krapp, A.; Frenking, G. J. Am. Chem. Soc. 2007, 129, 10340.
(b) Lee, V. Y.; Kato, R.; Sekiguchi, A. Bull. Chem. Soc. Jpn. 2013, 86, 1466.
[42] West, R.; Sohn, H.; Powell, D. R.; Müller, T.; Apeloig, Y. Angew. Chem., Int. Ed. 1996, 35, 1002.
[43] Choi, S.-B.; Boudjouk, P.; Qin, K. Organometallics 2000, 19, 1806.
[44] Liu, Y. X.; Ballweg, D.; Muller, T.; Guzei, I. A.; Clark, R. W.; West, R. J. Am. Chem. Soc. 2002, 124, 12174.
[45] Wang, W.; Yao, S.; van Wüllen, C.; Driess, M. J. Am. Chem. Soc. 2008, 130, 9640.
[46] Driess, M.; Woodul, W. D.; Richards, A. F.; Stasch, A.; Jones, C. Organometallics 2010, 29, 3655.
[47] Wang, W.; Inoue, S.; Yao, S.; Driess, M. Chem. Commun. 2009, 2661.
[48] Mizuhata, Y.; Fujimori, S.; Sasamori, T.; Tokitoh, N. Angew. Chem., Int. Ed. 2017, 56, 4588.
[49] (a) Sekiguchi, A.; Tsukamoto, M.; Ichinohe, M.; Fukaya, N. Phosphorus, Sulfur, Silicon Relat. Elem. 1997, 124, 323.
(b) Sekiguchi, A.; Tsukamoto, M.; Ichinohe, M. Science 1997, 275, 60.
[50] (a) Sekiguchi, A.; Fukaya, N.; Ichinohe, M.; Takagi, N.; Nagase, S. J. Am. Chem. Soc. 1999, 121, 11587.
(b) Sekiguchi, A.; Ishida, Y.; Fukaya, N.; Ichinohe, M.; Takagi, N.; Nagase, S. J. Am. Chem. Soc. 2002, 124, 1158.
[51] Sekiguchi, A.; Ishida, Y.; Kabe, Y.; Ichinohe, M. J. Am. Chem. Soc. 2002, 124, 8776.
[52] Ishida, Y.; Sekiguchi, A.; Kabe, Y. J. Am. Chem. Soc. 2003, 125, 11468.
[53] Fukaya, N.; Ichinohe, M.; Sekiguchi, A. Angew. Chem., Int. Ed. 2000, 39, 3881.
[54] Stender, M.; Phillips, A. D.; Power, P. P. Inorg. Chem. 2001, 40, 5314.
[55] Driess, M.; Yao, S.; Brym, M.; Wüllen, C. V. Angew. Chem., Int. Ed. 2006, 45, 4349.
/
〈 |
|
〉 |