Reviews

Rational Design of Chiral Catalysts Based on Experimental Data and Reaction Mechanism

  • Li Yao ,
  • Luo Sanzhong
Expand
  • Center for Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084

Received date: 2018-06-09

  Revised date: 2018-07-10

  Online published: 2018-07-16

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21672217, 21390400).

Abstract

Asymmetric catalysis is the most efficient chiral synthesis strategy. Chemists have already developed a variety of catalysts to achieve many asymmetric transformations. However, most of the deveoped chiral catalysts and the asymmetric catalytic reactions were developed on the basis of trios-errors approaches involving massive random screening. How to effectively obtain catalysts with higher activity and selectivity is still a challenge. In recent years, the rapid development of physical organic chemistry and computational chemistry has greatly facilitated the study of the reaction mechanism and the origin of selectivity, setting basis for rational catalyst design and evolution. This review will briefly introduce some representative works on the rational design of chiral catalysts in recent years, including rational design based on structure-activity relationship analysis, rational design based on reaction mechanism research, and computational design of enzymes.

Cite this article

Li Yao , Luo Sanzhong . Rational Design of Chiral Catalysts Based on Experimental Data and Reaction Mechanism[J]. Chinese Journal of Organic Chemistry, 2018 , 38(9) : 2363 -2376 . DOI: 10.6023/cjoc201806013

References

[1] (a) Hutt, A. J. In Smith and Williams' Introduction to the Principles of Drug Design and Action, Ed.:Smith, H. J.; CRC Press, Taylor & Francis, Boca Raton, FL, 2006.
(b) Garrison, A. W. Environ. Sci. Technol. 2006, 40, 16.
(c) Kitzerow, H.-S.; Bahr, C. Chirality in Liquid Crystals, Springer-Verlag, New York, 2001.
[2] (a) Hembury, G. A.; Borovkov, V. V.; Inoue, Y. Chem. Rev. 2008, 108, 1.
(b) Tsukamoto, M.; Kagan, H. B. Adv. Synth. Catal. 2002, 344, 453.
(c) Okamoto, Y.; Yashima, E. Angew. Chem., Int. Ed. 1998, 37, 1020.
(d) Knochel, P.; Singer, R. D. Chem. Rev. 1993, 93, 2117.
(e) Zhou, Q.-L. Privileged Chiral Ligands and Catalysts, Wiley-VCH, Weinheim, Germany, 2011.
[3] Ding, K. L.; Fan, Q. H. Asymmetric Catalysis:New Concepts and Methods, Chemical Industry Press, Beijing, 2009(in Chinese). (丁奎岭, 范青华, 不对称催化新概念与新方法, 化学工业出版社, 北京, 2009.)
[4] (a) Chen, Y.; Yekta, S.; Yudin, A. K. Chem. Rev. 2003, 103, 3155.
(b) Doyle, A. G.; Jacobsen E. N. Chem. Rev. 2007, 107, 5713.
(c) Ooi, T.; Maruoka, K. Angew. Chem., Int. Ed. 2007, 46, 4222.
(d) Hargaden, G. C.; Guiry, P. J. Chem. Rev. 2009, 109, 2505.
(f) Ward T. R. Acc. Chem. Res. 2011, 44, 47.
(g) Yu, Y.-N.; Xu, M.-H. Acta Chim. Sinica 2017, 75, 655(in Chinese). (于月娜, 徐明华, 化学学报, 2017, 75, 655.)
[5] (a) Harper, K. C.; Sigman, M. S. J. Org. Chem. 2013, 78, 2813.
(b) Houk, K. N.; Cheong, P. H.-Y. Nature 2008, 455, 309.
[6] Zanghellini, A. Curr. Opin. Biotechnol. 2014, 29, 132.
[7] Hammett, L. P. J. Am. Chem. Soc. 1937, 59, 96.
[8] Wells, P. R. Chem. Rev. 1963, 63, 171.
[9] Hansch, C.; Maloney, P. P.; Fujita, T.; Muir, R. M. Nature 1962, 194, 178.
[10] Jacobsen, E. N.; Zhang, W.; Güler, M. L. J. Am. Chem. Soc. 1991, 113, 6703.
[11] (a) Sigman, M. S.; Harper, K. C.; Bess, E. N.; Milo, A. Acc. Chem. Res. 2016, 49, 1292.
(b) Santiago, C. B.; Guo, J.-Y.; Sigman, M. S. Chem. Sci. 2018, 9, 2398.
(c) Zhang, L.; Li, X.; Luo, S. Z.; Cheng, J.-P. Sci. Sin. Chim. 2016, 46, 535(in Chinese). (张龙, 李鑫, 罗三中, 程津培, 中国科学:化学, 2016, 46, 535.)
[12] Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.
[13] Palucki, M.; Finney, N. S.; Pospisil, P. J.; Güler, M. L.; Ishida, T.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 948.
[14] Rodríguez-Escrich, S.; Reddy, K. S.; Jimeno, C.; Colet, G.; Rodríguez-Escrich, C.; Solá, L.; Vidal-Ferran, A.; Pericás, M. A. J. Org. Chem. 2008, 73, 5340.
[15] (a) Akiyama, T.; Mori, K. Chem. Rev. 2015, 115, 9277.
(b) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 1520.
[16] Jensen, K. H.; Sigman, M. S. Angew. Chem., Int. Ed. 2007, 46, 4748.
[17] Li, X.; Deng, H.; Zhang, B.; Li, J.; Zhang, L.; Luo, S. Z.; Cheng, J.-P. Chem.-Eur. J. 2010, 16, 450.
[18] (a) Knowles, R. R.; Jacobsen, E. N. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20678.
(b) Zuend, S. J.; Jacobsen, E. N. J. Am. Chem. Soc. 2009, 131, 15358.
[19] Jones, R. N.; Forbes W. F.; Mueller, W. A. Can. J. Chem. 1957, 35, 504.
[20] Milo, A.; Bess, E. N.; Sigman, M. S. Nature 2014, 507, 210.
[21] (a) Knowles, R. R.; Jacobsen, E. N. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 20678.
(b) Neel, A. J.; Hilton, M. J.; Sigman, M. S.; Toste, F. D. Nature 2017, 543, 637.
(c) Toste, F. D.; Sigman, M. S.; Miller, S. J. Acc. Chem. Res. 2017, 50, 609.
[22] Wheeler, S. E.; Houk, K. N. J. Am. Chem. Soc. 2008, 130, 10854.
[23] Orlandi, M.; Coelho, J. A. S.; Hilton, M. J.; Toste, F. D.; Sigman, M. S. J. Am. Chem. Soc. 2017, 139, 6803.
[24] Orlandi, M.; Hilton, M. J.; Yamamoto, E.; Toste, F. D.; Sigman, M. S. J. Am. Chem. Soc. 2017, 139, 12688.
[25] Taft Jr, R. W. J. Am. Chem. Soc. 1952, 72, 2729.
[26] Charton, M. J. Am. Chem. Soc. 1975, 97, 1552.
[27] Verloop, A. In Drug Design, Academic Press, New York, 1976.
[28] Harper, K. C.; Bess, E. N.; Sigman, M. S. Nat. Chem. 2012, 4, 366.
[29] Harper, K. C.; Sigman, M. S. Science 2011, 333, 1875.
[30] Harper, K. C.; Vilardi, S. C.; Sigman, M. S. J. Am. Chem. Soc. 2013, 135, 2482.
[31] Yang, C.; Zhang, E.-G.; Li, X.; Cheng, J.-P. Angew. Chem., Int. Ed. 2016, 55, 6506.
[32] Yang, C.; Wang, J.; Liu, Y.; Ni, X.; Li, X.; Cheng, J. P. Chem.-Eur. J. 2017, 23, 5488.
[33] Belokon, Y. N.; Green, B.; Ikonnikov, N. S.; Larichev, V. S.; Lokshin, B. V.; Moscalenko, M. A.; North, M.; Orizu, C.; Peregudov, A. S;. Timofeeva, G. I. Eur. J. Org. Chem. 2000, 2655.
[34] Belokon, Y. N.; Blacker, A. J.; Carta, P.; Clutterbuck, L. A.; North, M. Tetrahedron 2004, 60, 10433.
[35] Zhang, Z.; Wang, Z.; Zhang. R.; Ding, K. Angew. Chem., Int. Ed. 2010, 49, 6746.
[36] DiRocco, D. A.; Ji, Y.; Sherer, E. C.; Klapars, A.; Reibarkh, M.; Dropinski, J.; Mathew, R.; Maligres, P.; Hyde, A. M.; Limanto, J.; Brunskill, A.; Ruck, R. T.; Campeau, L.-C.; Davies, I. W. Science 2017, 356, 426.
[37] Mitsumori, S.; Zhang, H.; Cheong, P. H.-Y.; Houk, K. N.; Tanaka, F.; Barbas, C. F. J. Am. Chem. Soc. 2006, 128, 1040.
[38] Cheong, P. H.-Y.; Zhang, H.; Thayumanavan, R.; Tanaka, F.; Houk, K. N.; Barbas, C. F. Org. Lett. 2006, 8, 811.
[39] Jang, K. P.; Hutson, G. E.; Johnston, R. C.; McCusker, E. O.; Cheong, P. H.-Y.; Scheidt, K. A. J. Am. Chem. Soc. 2014, 136, 76.
[40] Rooks, B. J.; Haas, M. R.; Sepúlveda, D.; Lu, T.; Wheeler, S. E. ACS Catal. 2015, 5, 272.
[41] Doney, A. C.; Rooks, B. J.; Lu, T.; Wheeler, S. E. ACS Catal. 2016, 6, 7948.
[42] Guan, Y.; Wheeler, S. E. Angew. Chem., Int. Ed. 2017, 56, 9101.
[43] Gerosa, G. G.; Spanevello, R. A.; Suárez, A. G.; Sarotti, A. M. J. Org. Chem. 2015, 80, 7626.
[44] Straker, R. N.; Peng, Q.; Mekareeya, A.; Paton, R. S.; Anderson, E. A. Nat. Commun. 2016, 7, 10109.
[45] Burrows, L. C.; Jesikiewicz, L. T.; Lu, G.; Geib, S. J.; Liu, P.; Brummond, K. M. J. Am. Chem. Soc. 2017, 139, 15022.
[46] Daubignard, J.; Detz, R. J.; Jans, A. C. H.; Bruin, B. de; Reek, J. N. H. Angew. Chem., Int. Ed. 2017, 56, 13056.
[47] Duan, M.; Zhu, L.; Qi, X.; Yu, Z.; Li, Y.; Bai, R.; Lan, Y. Sci. Rep. 2017, 7, 7619.
[48] Lee, S. Y.; Fujiwara, Y.; Nishiguchi, A.; Kalek, M.; Fu, G. C. J. Am. Chem. Soc. 2015, 137, 4587.
[49] Bottcher, D.; Bornscheuer, U. T. Curr. Opin. Microbiol. 2010, 13, 274.
[50] (a) Schwizer, F.; Okamoto, Y.; Heinisch, T.; Gu, Y.; Pellizzoni, M. M.; Lebrun, V.; Reuter, R.; Köhler, V.; Lewis, J. C.; Ward, T. R. Chem. Rev. 2018, 118, 142.
(b) Heinisch, T., Ward, T. R. Acc. Chem. Res. 2016, 49, 1711.
(c) Pamies, O.; Diéguez, M.; Backvallb, J.-E. Adv. Synth. Catal. 2015, 357, 1567.
[51] Huang, P.-S.; Boyken, S, E.; Baker, D. Nature 2015, 320, 537.
[52] Wijma, H. J.; Floor, R. J.; Bjelic, S.; Marrink, S. J.; Baker, D.; Janssen, D. B. Angew. Chem., Int. Ed. 2015, 54, 3726.
[53] Li, R.; Wijma, H. J.; Song, L.; Cui, Y.; Otzen, M.; Tian, Y.; Du, J.; Li, T.; Niu, D.; Chen, Y.; Feng, J.; Han, J.; Chen, H.; Tao, Y.; Janssen, D. B.; Wu B. Nat. Chem. Biol. 2018, 14, 664.
[54] Jiang, L.; Althoff, E. A.; Clemente, F. R.; Doyle, L.; Rothlisberger, D.; Zanghellini, A.; Gallaher, J. L.; Betker, J. L.; Tanaka, F.; Barbas, C. F.; Hilvert, D.; Houk, K. N.; Stoddard, B. L.; Baker, D. Science 2008, 319, 1387.
[55] Richter, F.; Leaver-Fay, A.; Khare, S. D.; Bjelic, S.; Baker, D. PLoS One 2011, 6, e19230.
[56] (a) Tian, Z.; Sun, P.; Yan, Y.; Wu, Z.; Zheng, Q.; Zhou, S.; Zhang, H.; Yu, F.; Jia, X.; Chen, D.; Mándi, A.; Kurtán, T.; Liu, W. Nat. Chem. Biol. 2015, 11, 259.
(b) Jeon, B.; Wang, S.-A.; Ruszczycky, M. W.; Liu, H.-W. Chem. Rev. 2017, 117, 5367.
[57] Siegel, J. B.; Zanghellini, A.; Lovick, H. M.; Kiss, G.; Lambert, A. R.; Clair, J. L. S.; Gallaher, J. L.; Hilvert, D.; Gelb, M. H.; Stoddard, B. L.; Houk, K. N.; Michael, F. E.; Baker, D. Science 2010, 329, 309.
[58] Segler, M. H. S.; Preuss, M.; Waller, M. P. Nature 2018, 555, 604.
[59] Ahneman, D. T.; Estrada, J. G.; Lin, S.; Dreher, S. D.; Doyle, A. G. Science 2018, 360, 186.

Outlines

/