Reviews

Biosynthesis, Total Synthesis and Semisynthesis of Platensimycin, Platencin and their Analogues

  • Tian Kai ,
  • Deng Youchao ,
  • Li Yuling ,
  • Duan Yanwen ,
  • Huang Yong
Expand
  • a Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013;
    b Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha 410205;
    c National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha 410205

Received date: 2018-05-31

  Revised date: 2018-06-28

  Online published: 2018-07-16

Supported by

Project supported by the National Natural Science Foundation of China (No. 81473123) and the Chinese Ministry of Education 111 Project (No. B0803420).

Abstract

The emergence of multi-drug resistant bacteria is one of the major public heath crises. Platensimycin (PTM) and platencin (PTN) are potent antibacterial drug leads against many gram-postive pathogens, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. The past decade has witnessed the systematic study of biosynthesis, total synthesis and semisynthesis of these facinating molecules, due to their novel structures and excellent biological activities in vitro and in vivo. These studies have shed new lights on the disovery of microbial drug leads through novel high throughput strategies. Dedicated enzymes for the formation of PTM and PTN and other metabolites in their biosynthetic pathways, including new-characterized bacterial diterpenoid synthases and thiocarboxylate biosynthetic enzymes, have been revealed. The generation of many analogues of PTM and PTN though organic synthesis and precursor-directed biosynthesis has helped to establish the structure-activity relationships of PTM, PTN and their analgues. This review summarizes the progress in the disovery and development of these outstanding natural product drug leads, which supports the notion to integrate biosynthesis and organic synthesis for rapid microbial drug discovery and development.

Cite this article

Tian Kai , Deng Youchao , Li Yuling , Duan Yanwen , Huang Yong . Biosynthesis, Total Synthesis and Semisynthesis of Platensimycin, Platencin and their Analogues[J]. Chinese Journal of Organic Chemistry, 2018 , 38(9) : 2348 -2362 . DOI: 10.6023/cjoc201805062

References

[1] (a) Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A. K. M.; Wertheim, H. F. L.; Sumpradit, N.; Vlieghe, E.; Hara, G. L.; Gould, I. M.; Goossens, H.; Greko, C.; So, A. D.; Bigdeli, M.; Tomson, G.; Woodhouse, W.; Ombaka, E.; Peralta, A. Q.; Qamar, F. N.; Mir, F.; Kariuki, S.; Bhutta, Z. A.; Coates, A.; Bergstrom, R.; Wright, G. D.; Brown, E. D.; Cars, O. Lancet Infect. Dis. 2013, 13, 1057.
(b) Zhang, Q.-Q.; Ying, G.-G.; Pan, C.-G.; Liu, Y.-S.; Zhao, J.-L. Environ. Sci. Technol. 2015, 49, 6772.
(c) Berendonk, T. U.; Manaia, C. M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Burgmann, H.; Sorum, H.; Norstrom, M.; Pons, M. N.; Kreuzinger, N.; Huovinen, P.; Stefani, S.; Schwartz, T.; Kisand, V.; Baquero, F.; Martinez, J. L. Nat. Rev. Microbiol. 2015, 13, 310.
(d) Tommasi, R.; Brown, D. G.; Walkup, G. K.; Manchester, J. I.; Miller, A. A. Nat. Rev. Drug Discovery 2015, 14, 529.
[2] The Pew Charitable Trusts, March 11, 2016. "A Scientific Roadmap for Antibiotic Discovery" http://www.pewtrusts.org/en/research-and-analysis/reports/2016/05/a-scientific-roadmap-for-antibiotic-discovery.
[3] (a) Parsons, J. B.; Rock, C. O. Curr. Opin. Microbiol. 2011, 14, 544.
(b) Heath, R. J.; Rock, C. O. Nat. Prod. Rep. 2002, 19, 581.
[4] (a) Wang, J.; Soisson, S. M.; Young, K.; Shoop, W.; Kodali, S.; Galgoci, A.; Painter, R.; Parthasarathy, G.; Tang, Y. S.; Cummings, R.; Ha, S.; Dorso, K.; Motyl, M.; Jayasuriya, H.; Ondeyka, J.; Herath, K.; Zhang, C.; Hernandez, L.; Allocco, J.; Basilio, A. N.; Tormo, J. R.; Genilloud, O.; Vicente, F.; Pelaez, F.; Colwell, L.; Lee, S. H.; Michael, B.; Felcetto, T.; Gill, C.; Silver, L. L.; Hermes, J. D.; Bartizal, K.; Barrett, J.; Schmatz, D.; Becker, J. W.; Cully, D.; Singh, S. B. Nature 2006, 441, 358.
(b) Wang, J.; Kodali, S.; Lee, S. H.; Galgoci, A.; Painter, R.; Dorso, K.; Racine, F.; Motyl, M.; Hernandez, L.; Tinney, E.; Colletti, S. L.; Herath, K.; Cummings, R.; Salazar, O.; González, I.; Basilio, A.; Vicente, F.; Genilloud, O.; Pelaez, F.; Jayasuriya, H.; Young, K.; Cully, D. F.; Singh, S. B. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 7612.
[5] (a) Yao, Y.-S.; Yao, Z.-J. Chin. J. Org. Chem. 2008, 28, 1553(in Chinese). (姚元山, 姚祝军, 有机化学, 2008, 28, 1553.)
(b) Yao, Y.-S.; Yao, Z.-J. Natural Products Total Synthesis-Anti-biotics and Others, Science Press, Beijing, 2012, pp. 150~186(in Chinese). (姚元山, 姚祝军, 天然产物全合成荟萃——抗生素及其他, 科学出版社, 北京, 2012, pp. 150~186.)
[6] Rudolf, J. D.; Dong, L.-B.; Shen, B. Biochem. Pharmacol. 2017, 133, 139.
[7] Shang, R.; Liang, J.; Yi, Y.; Liu, Y.; Wang, J. Molecules 2015, 20, 16127.
[8] Martens, E.; Demain, A. L. J. Antibiot. 2011, 64, 705.
[9] Singh, S. B.; Young, K.; Miesel, L. Expert. Rev. Anti-Infect. Ther. 2011, 9, 589.
[10] Saleem, M.; Hussain, H.; Ahmed, I.; van Ree, T.; Krohn, K. Nat. Prod. Rep. 2011, 28, 1534.
[11] Nicolaou, K. C.; Chen, J. S.; Edmonds, D. J.; Estrada, A. A. Angew. Chem., Int. Ed. 2009, 48, 660.
[12] Lu, X.; You, Q. Curr. Med. Chem. 2010, 17, 1139.
[13] Young, K.; Jayasuriya, H.; Ondeyka, J. G.; Herath, K.; Zhang, C.; Kodali, S.; Galgoci, A.; Painter, R.; Brown-Driver, V.; Yamamoto, R.; Silver, L. L.; Zheng, Y.; Ventura, J. I.; Sigmund, J.; Ha, S.; Basilio, A.; Vicente, F.; Tormo, J. R. n.; Pelaez, F.; Youngman, P.; Cully, D.; Barrett, J. F.; Schmatz, D.; Singh, S. B.; Wang, J. Antimicrob. Agents Chemother. 2006, 50, 519.
[14] Ondeyka, J. G.; Zink, D.; Basilio, A.; Vicente, F.; Bills, G.; Diez, M. T.; Motyl, M.; Dezeny, G.; Byrne, K.; Singh, S. B. J. Nat. Prod. 2007, 70, 668.
[15] Jayasuriya, H.; Zink, D.; Basilio, A.; Vicente, F.; Collado, J.; Bills, G.; Goldman, M. L.; Motyl, M.; Huber, J.; Dezeny, G.; Byrne, K.; Singh, S. B. J. Antibiot. 2009, 62, 265.
[16] Ondeyka, J.; Buevich, A. V.; Williamson, R. T.; Zink, D. L.; Polishook, J. D.; Occi, J.; Vicente, F.; Basilio, A.; Bills, G. F.; Donald, R. G. K.; Phillips, J. W.; Goetz, M. A.; Singh, S. B. J. Nat. Prod. 2014, 77, 497.
[17] Brown, A. K.; Taylor, R. C.; Bhatt, A.; Terer, K. F.; Besra, G. S. PLoS One 2009, 4, e6306.
[18] Moustafa, G. A. I.; Nojima, S.; Yamano, Y.; Aono, A.; Arai, M.; Mitarai, S.; Tanaka, T.; Yoshimitsu, T. Med. Chem. Commun. 2013, 4, 720.
[19] Hindra; Huang, T.; Yang, D.; Rudolf, J. D.; Xie, P.; Xie, G.; Teng, Q.; Lohman, J. R.; Zhu, X.; Huang, Y.; Zhao, L.-X.; Jiang, Y.; Duan, Y.; Shen, B. J. Nat. Prod. 2014, 77, 2296.
[20] Herath, K. B.; Attygalle, A. B.; Singh, S. B. J. Am. Chem. Soc. 2007, 129, 15422.
[21] Herath, K.; Attygalle, A. B.; Singh, S. B. Tetrahedron Lett. 2008, 49, 5755.
[22] (a) Smanski, M. J.; Peterson, R. M.; Rajski, S. R.; Shen, B. Antimicrob. Agents Chemother. 2009, 53, 1299.
(b) Smanski, M. J.; Yu, Z.; Casper, J.; Lin, S.; Peterson, R. M.; Chen, Y.; Wendt-Pienkowski, E.; Rajski, S. R.; Shen, B. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 13498.
[23] Rudolf, J. D.; Dong, L.-B.; Manoogian, K.; Shen, B. J. Am. Chem. Soc. 2016, 138, 16711.
[24] Rudolf, J. D.; Dong, L.-B.; Cao, H.; Hatzos-Skintges, C.; Osipiuk, J.; Endres, M.; Chang, C.-Y.; Ma, M.; Babnigg, G.; Joachimiak, A.; George N.; Phillips, J.; Shen, B. J. Am. Chem. Soc. 2016, 138, 10905.
[25] Wang, N.; Rudolf, J. D.; Dong, L. B.; Osipiuk, J.; Hatzos-Skintges, C.; Endres, M.; Chang, C. Y.; Babnigg, G.; Joachimiak, A.; Phillips, G. N., Jr.; Shen, B. Nat. Chem. Biol. 2018, 14, 730.
[26] Dong, L.-B.; Rudolf, J. D.; Shen, B. Bioorg. Med. Chem. 2016, 24, 6348.
[27] Dong, L.-B.; Rudolf, J. D.; Kang, D.; Wang, N.; He, C. Q.; Deng, Y.; Huang, Y.; Houk, K. N.; Duan, Y.; Shen, B. Nat. Commun. 2018, 9, 1.
[28] Wang, J.; Sun, W.-B.; Li, Y.-Z.; Wang, X.; Sun, B.-F.; Lin, G.-Q.; Zou, J.-P. Org. Chem. Front. 2015, 2, 674.
[29] Jiao, Z.-W.; Tu, Y.-Q.; Zhang, Q.; Liu, W.-X.; Wang, S.-H.; Wang, M. Org. Chem. Front. 2015, 2, 913.
[30] Zhu, L.; Zhou, C.; Yang, W.; He, S.; Cheng, G.-J.; Zhang, X.; Lee, C.-S. J. Org. Chem. 2013, 78, 7912.
[31] Nicolaou, K. C.; Li, A.; Edmonds, D. J. Angew. Chem., Int. Ed. 2006, 45, 7086.
[32] Ghosh, A. K.; Xi, K. J. Org. Chem. 2009, 74, 1163.
[33] Eey, S. T.-C.; Lear, M. J. Chem.-Eur. J. 2014, 20, 11556.
[34] Nicolaou, K. C.; Tria, G. S.; Edmonds, D. J. Angew. Chem., Int. Ed. 2008, 120, 1804.
[35] Yoshimitsu, T.; Nojima, S.; Hashimoto, M.; Tanaka, T. Org. Lett. 2011, 13, 3698.
[36] Tiefenbacher, K.; Mulzer, J. J. Org. Chem. 2009, 74, 2937.
[37] Chang, E. L.; Schwartz, B. D.; Draffan, A. G.; Banwell, M. G.; Willis, A. C. Chem.-Asian J. 2015, 10, 427.
[38] (a) Heretsch, P.; Giannis, A. Synthesis 2007, 2614.
(b) McNulty, J.; Nair, J. J.; Capretta, A. Tetrahedron Lett. 2009, 50, 4087.
[39] Eey, S. T.-C.; Lear, M. J. Org. Lett. 2010, 12, 5510.
[40] Zhu, L.; Han, Y.; Du, G.; Lee, C.-S. Org. Lett. 2013, 15, 524.
[41] (a) Nicolaou, K. C.; Edmonds, D. J.; Li, A.; Tria, G. S. Angew. Chem., Int. Ed. 2007, 46, 3942.
(b) Nicolaou, K. C.; Li, A.; Edmonds, D. J.; Tria, G. S.; Ellery, S. P. J. Am. Chem. Soc. 2009, 131, 16905.
(c) Nicolaou, K. C.; Li, A.; Ellery, S. P.; Edmonds, D. J. Angew. Chem., Int. Ed. 2009, 48, 6293.
(d) Nicolaou, K. C.; Tria, G. S.; Edmonds, D. J.; Kar, M. J. Am. Chem. Soc. 2009, 131, 15909.
(e) Tiefenbacher, K.; Mulzer, J. Angew. Chem., Int. Ed. 2007, 46, 8074.
(f) Tiefenbacher, K.; Tröndlin, L.; Mulzer, J.; Pfaltz, A. Tetrahedron 2010, 66, 6508.
(g) Tiefenbacher, K.; Mulzer, J. Angew. Chem., Int. Ed. 2008, 47, 6199.
(h) Tiefenbacher, K.; Mulzer, J. J. Org. Chem. 2009, 74, 2937.
(i) Yun, S. Y.; Zheng, J. C.; Lee, D. Angew. Chem., Int. Ed. 2008, 47, 6201.
(j) Yun, S. Y.; Zheng, J.-C.; Lee, D. J. Am. Chem. Soc. 2009, 131, 8413.
(k) Kim, C. H.; Jang, K. P.; Choi, S. Y.; Chung, Y. K.; Lee, E. Angew. Chem., Int. Ed. 2008, 47, 4009.
(l) Beaulieu, M.-A.; Sabot, C.; Achache, N.; Gurard, K. C.; Canesi, S. Chem.-Eur. J. 2010, 16, 11224.
(m) Horii, S.; Torihata, M.; Nagasawa, T.; Kuwahara, S. J. Org. Chem. 2013, 78, 2798.
(n) McGrath, N. A.; Bartlett, E. S.; Sittihan, S.; Njardarson, J. T. Angew. Chem., Int. Ed. 2009, 48, 8543.
(o) Ghosh, A. K.; Xi, K. Org. Lett. 2007, 9, 4013.
(p) Ghosh, A. K.; Xi, K. J. Org. Chem. 2009, 74, 1163.
(q) Ghosh, A. K.; Xi, K. Angew. Chem., Int. Ed. 2009, 48, 5372.
(r) Magnus, P.; Rivera, H.; Lynch, V. Org. Lett. 2010, 12, 5677.
(s) Oblak, E. Z.; Wright, D. L. Org. Lett. 2011, 13, 2263.
(t) VanHeyst, M. D.; Oblak, E. Z.; Wright, D. L. J. Org. Chem. 2013, 78, 10555.
(u) Waalboer, D. C.; Schaapman, M. C.; van Delft, F. L.; Rutjes, F. P. Angew. Chem., Int. Ed. 2008, 47, 6576.
(v) Varseev, G. N.; Maier, M. E. Angew. Chem., Int. Ed. 2009, 121, 3739.
(w) Li, P.; Yamamoto, H. Chem. Commun. 2010, 46, 6294.
(x) Kerrie, A. B. Austin; Banwell, M. G.; Willis, A. C. Org. Lett. 2008, 10, 4465.
(y) Yoshimitsu, T.; Nojima, S.; Hashimoto, M.; Tanaka, T. Org. Lett. 2011, 13, 3698.
(z) Moustafa, G. A.; Saku, Y.; Aoyama, H.; Yoshimitsu, T. Chem. Commun. 2014, 50, 15706.
[42] Rossiter, S. E.; Fletcher, M. H.; Wuest, W. M. Chem. Rev. 2017, 117, 12415.
[43] Nicolaou, K. C.; Stepan, A. F.; Lister, T.; Li, A.; Montero, A.; Tria, G. S.; Turner, C. I.; Tang, Y.; Wang, J.; Denton, R. M.; Edmonds, D. J. J. Am. Chem. Soc. 2008, 130, 13110.
[44] Nicolaou, K. C.; Lister, T.; Denton, R. M.; Montero, A.; Edmonds, D. J. Angew. Chem., Int. Ed. 2007, 46, 4712.
[45] Nicolaou, K. C.; Tang, Y.; Wang, J.; Stepan, A. F.; Li, A.; Montero, A. J. Am. Chem. Soc. 2007, 129, 14850.
[46] Wang, J.; Lee, V.; Sintim, H. O. Chem.-Eur. J. 2009, 15, 2747.
[47] Jang, K. P.; Kim, C. H.; Na, S. W.; Jang, D. S.; Kim, H.; Kang, H.; Lee, E. Bioorg. Med. Chem. Lett. 2010, 20, 2156.
[48] Tiefenbacher, K.; Gollner, A.; Mulzer, J. Chem.-Eur. J. 2010, 16, 9616.
[49] Leung, G. Y. C.; Li, H.; Toh, Q.-Y.; Ng, A. M. Y.; Sum, R. J.; Bandow, J. E.; Chen, D. Y. K. Eur. J. Org. Chem. 2011, 183.
[50] Waalboer, D. C.; Leenders, S. H.; Schulin-Casonato, T.; van Delft, F. L.; Rutjes, F. P. Chem.-Eur. J. 2010, 16, 11233.
[51] Barykina, O. V.; Rossi, K. L.; Rybak, M. J.; Snider, B. B. Org. Lett. 2009, 11, 5334.
[52] (a) Cragg, G. M.; Grothaus, P. G.; Newman, D. J. J. Nat. Prod. 2014, 77, 703.
(b) Florence, G. J.; Gardner, N. M.; Paterson, I. Nat. Prod. Rep. 2008, 25, 342.
(c) Mickel, S. J.; Niederer, D.; Daeffler, R.; Osmani, A.; Kuesters, E.; Schmid, E.; Schaer, K.; Gamboni, R. Org. Process Res. Dev. 2004, 8, 122.
(d) Wender, P. A.; Hardman, C. T.; Ho, S.; Jeffreys, M. S.; Maclaren, J. K.; Quiroz, R. V.; Ryckbosch, S. M.; Shimizu, A. J.; Sloane, J. L.; Stevens, M. C. Science 2017, 358, 218.
(e) Smanski, M. J.; Peterson, R. M.; Huang, S. X.; Shen, B. Curr. Opin. Chem. Biol. 2012, 16, 132.
[53] Zhang, C.; Ondeyka, J.; Herath, K.; Jayasuriya, H.; Guan, Z.; Zink, D. L.; Dietrich, L.; Burgess, B.; Ha, S. N.; Wang, J.; Singh, S. B. J. Nat. Prod. 2011, 74, 329.
[54] Yu, Z.; Smanski, M. J.; Peterson, R. M.; Marchillo, K.; Andes, D.; Rajski, S. R.; Shen, B. Org. lett. 2010, 12, 1744.
[55] Shi, J.; Pan, J.; Liu, L.; Yang, D.; Lu, S.; Zhu, X.; Shen, B.; Duan, Y.; Huang, Y. J. Ind. Microbiol. Biotechnol. 2016, 43, 1027.
[56] Singh, S. B.; Herath, K. B.; Wang, J.; Tsou, N.; Ball, R. G. Tetrahedron Lett. 2007, 48, 5429.
[57] (a) Qiu, L.; Tian, K.; Pan, J.; Jiang, L.; Yang, H.; Zhu, X.; Shen, B.; Duan, Y.; Huang, Y. Tetrahedron 2017, 73, 771.
(b) Deng, Y.; Kang, D.; Shi, J.; Zhou, W.; Sun, A.; Ju, J.; Zhu, X.; Shen, B.; Duan, Y.; Huang, Y. Med. Chem. Commun. 2018, 9, 789.
(c) Qiu, L.; Tian, K.; Wen, Z.; Deng, Y.; Kang, D.; Liang, H.; Zhu, X.; Shen, B.; Duan, Y.; Huang, Y. J. Nat. Prod. 2018, 81, 316.
[58] Tian, K.; Deng, Y.; Qiu, L.; Zhu X.; Shen, B.; Duan, Y.; Huang, Y. (under review).
[59] Shen, H. C.; Ding, F. X.; Singh, S. B.; Parthasarathy, G.; Soisson, S. M.; Ha, S. N.; Chen, X.; Kodali, S.; Wang, J.; Dorso, K.; Tata, J. R.; Hammond, M. L.; Maccoss, M.; Colletti, S. L. Bioorg. Med. Chem. Lett. 2009, 19, 1623.
[60] Dong, L.-B.; Rudolf, J. D.; Lin, L.; Ruiz, C.; Cameron, M. D.; Shen, B. Bioorg. Med. Chem. 2017, 25, 1990.
[61] Dong, L. B.; Rudolf, J. D.; Shen, B. Org. Lett. 2016, 18, 4606.
[62] Nicolaou, K. C.; Lister, T.; Denton, R. M.; Montero, A.; Edmonds, D. J. Angew. Chem., Int. Ed. 2007, 119, 4796.
[63] Nicolaou, K. C.; Tang, Y.; Wang, J.; Stepan, A. F.; Li, A.; Montero, A. J. Am. Chem. Soc. 2007, 129, 14850.
[64] (a) Wu, M.; Singh, S. B.; Wang, J.; Chung, C. C.; Salituro, G.; Karanam, B. V.; Lee, S. H.; Powles, M.; Ellsworth, K. P.; Lassman, M. E.; Miller, C.; Myers, R. W.; Tota, M. R.; Zhang, B. B.; Li, C. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 5378.
(b) Singh, S. B.; Kang, L.; Nawrocki, A. R.; Zhou, D.; Wu, M.; Previs, S.; Miller, C.; Liu, H.; Hines, C. D.; Madeira, M.; Cao, J.; Herath, K.; Spears, L. D.; Semenkovich, C. F.; Wang, L.; Kelley, D. E.; Li, C.; Guan, H. P. PLoS One 2016, 11, e0164133.
[65] Smanski, M. J.; Peterson, R. M.; Huang, S. X.; Shen, B. Curr. Opin. Chem. Biol. 2012, 16, 132.

Outlines

/