Articles

β-Cyclodextrin Modified Gold Nanoparticles: Catalytic Applications and Molecular Selectivity

  • Zhang Wei ,
  • Deng Wei
Expand
  • a School of Materials Science and Engineering, Shanghai University, Shanghai 200444;
    b School of Chemical and Engineering, Shanghai Institute of Technology, Shanghai 201418

Received date: 2018-03-25

  Revised date: 2018-07-03

  Online published: 2018-07-24

Supported by

Project supported by the Shanghai Municipal Education Commission (Plateau Discipline Construction Program), the National Science Foundation of China (Nos. 21601125, 21174081), the Natural Science Foundation of Shanghai City (No. 16ZR1435700), the Shuguang Scholar of Shanghai Municipal Education Commission (No. 16SG49), the Shuguang Scholar Project and Start-up Funding of Shanghai Institute of Technology (No. YJ-201610).

Abstract

L-Cys-β-CD@AuNPs nanoparticles were synthesized by a simple method of the reduction of HAuCl4 with NaBH4and L-Cys-CD. The catalytic activity of L-Cys-β-CD@AuNPs nanoparticles for the catalytic reductions of 4-nitrophenol and 4-nitro-1-naphthol was researched in detail. Because of the selective binding of β-cyclodextrin (β-CD) to different guest molecules, L-Cys-β-CD@AuNPs exhibits diverse catalytic activities for different substrates. The experimental results prove that L-Cys-β-CD@AuNPs shows better catalytic efficiency for the reduction of 4-nitro-1-naphthol than p-nitrophenol.

Cite this article

Zhang Wei , Deng Wei . β-Cyclodextrin Modified Gold Nanoparticles: Catalytic Applications and Molecular Selectivity[J]. Chinese Journal of Organic Chemistry, 2018 , 38(11) : 3002 -3008 . DOI: 10.6023/cjoc201803038

References

[1] Ran, X.; Yang, L.; Qu, Q.; Li, S.-L.; Chen, Y.; Zuo, L.-M. RSC Adv. 2017, 7, 1947.
[2] Liu, Y., Xiang, M.-H., Hong, L. RSC Adv. 2017, 7, 6467.
[3] Hapiot, F.; Menuel, S.; Ferreira, M.; Leger, B.; Bricout, H.; Tilloy, S.; Monflier, E. ACS Sustainable Chem. Eng. 2017, 5, 3598.
[4] Wen, D.; Liu W.; Haubold, D.; Zhu, C.; Oschatz, M.; Holzschuh, M.; Wolf, A.; Simon, F.; Kaskel, S.; Eychmuller, A. ACS Nano 2016, 10, 2559.
[5] Putta, C.; Sharavath, V.; Sarkar, S.; Ghosh, S. RSC Adv. 2015, 5, 6652.
[6] Fensterbank, L.; Malacria, M. Acc. Chem. Res. 2014, 47, 953,
[7] Zhao, Y.; Huang, Y.-C.; Zhu, H.; Zhu, Q.-Q.; Xia, Y.-S. J. Am. Chem. Soc. 2016, 138, 16645.
[8] Ye, W.-C.; Yu, J.; Zhou, Y.-X.; Gao, D.-Q.; Wang, D.-A.; Wang, C.-M.; Xue, D.-S. Appl. Catal. B:Environ. 2016, 181, 371.
[9] Noh, J. H.; Patala, R.; Meijboom, R. Appl. Catal. A:Gen. 2016, 514, 253.
[10] Chevry, M.; Vanbesien, T.; Menuel, S.; Monflier, E.; Hapiot, F Premkumar, T.; Geckeler, K. E. Catal. Sci. Technol. 2017, 7, 114.
[11] Ping, Y.; Wu, D.-C.; Kumar, J. N.; Cheng, W.-R.; Lay, C. L.; Liu, Y. Biomacromolecules 2013, 14, 2083.
[12] Chen, L.; Zhu, X.-Y.; Yan, D.-Y.; Chen, Y.; Chen, Q.; Yao, Y.-F. Angew. Chem., Int. Ed. 2006, 118, 93.
[13] Wang, J.; Wang, X.-C.; Zhang, X.-T. J. Mater. Chem. A 2016, 5, 4308.
[14] Qi, L.; Tian, H.-H.; Shao, H.-B.; Yu, H.-Z. J. Phys. Chem. C 2017, 121, 7985.
[15] Massaro, M.; Colletti, C.-G.; Lazzara, G.; Guernelli, S.; Noto, R.; Riela, S. ACS Sustainable Chem. Eng. 2017, 5, 3346.
[16] Zou, H. X.; Sun, H. C.; Wang, L.; Zhao, L. L.; Li, J. X.; Dong, Z. Y.; Luo, Q.; Xu, J. Y.; Liu, J. Q. Soft Matter 2016 12, 1192.
[17] Yao, N.; Lin, W.-J.; Zhang, X.-F.; Gu, H.-W.; Zhang, L.-J. J. Polym. Sci. Polym. 2016, 54, 186.
[18] Wang, M.-L.; Fang, G.-D.; Liu, P.; Zhou, D.-M.; Ma, C.; Zhang, D.-J. Zhan, J.-H. Appl. Catal., B 2016, 188, 113.
[19] Wang, F.; Pu, H.-T.; Che, X. Chem. Commun. 2016, 52, 3516.
[20] Sagir, H.; Rahila Rai, P.; Singh, P. K.; Siddiqui, I. R. New J. Chem. 2016, 40, 6819.
[21] Jia, F.; Yang, X.-D.; Li, Z.-Y. RSC Adv. 2016, 6, 92723.
[22] Iwaso, K.; Takashima, Y.; Harada, A. Nat. Chem. 2016, 8, 626.
[23] Li, H.-Y.; Meng, B.; Chai, S.-H.; Liu, H.-L.; Dai, S. Chem. Sci. 2016, 7, 905.
[24] Mathew, A.; Natarajan, G.; Lehtovaara, L.; Hakkinen, H.; Kumar, R. M.; Subramanian, V.; Jaleel, A.; Pradeep, T. ACS Nano 2014, 1, 139.
[25] Wen, X.; Qiao, X.-L.; Han, X.; Niu, L. B.; Huo, L.; Bai, G.-Y. J. Mater. Sci. 2015, 51, 3170.
[26] Wen, D.; Liu, W.; Herrmann, A. K.; Haubold, D.; Holzschuh, M.; Simon, F.; Eychmuller, A. Small 2016, 12, 2439.
[27] Daneshvar, L.; Rounaghi, G. H. J. Electrochem. Soc. 2017, 164, 177.
[28] Jia, H.; Schmitz, D.; Ott, A.; Pich, A.; Lu, Y. J. Mater. Chem. A 2015, 3, 6187.
[29] Padilla, M.; Peccati, F.; Bourdelande, J. L.; Solans-Monfort, X.; Guirado, G.; Sodupe, M.; Hernando, J. Chem. Commun. 2017, 53, 2126.
[30] Luo, C. H.; Dong, Q. J.; Qian, M. J.; Zhang, H. Chem. Phys. Lett. 2016, 664, 89.
[31] Zhao, M.-X.; Zhao, M.; Zeng, E.-Z.; Li, Y.; Li, J.-M.; Cao, Q.; Tan, C.-P.; Ji, L.-N.; Mao, Z.-W. J. Inorg. Biochem. 2014, 137, 31.
[32] Zhao, M.-X.; Li, J.-M.; Du, L.-Y.; Tan, C.-P.; Xia, Q.; Mao, Z.-W.; Ji, L.-N. Chem.-Eur. J. 2011, 17, 5171.

Outlines

/