Reviews

Research Progress of Covalent Inhibitors

Expand
  • a Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871;
    b Peking-Tsinghua Center for Life Sciences, Beijing 100871

Received date: 2018-04-10

  Revised date: 2018-06-19

  Online published: 2018-07-24

Supported by

Project supported by the National Key Research and Development Program of China (No. 2017YFA0505200), the National Key Fundamental Research and Development of China (973 Program, No. 2015CB856200), the National Natural Science Foundation of China (Nos. 21472010, 21521003, 21561142002, 21625201).

Abstract

The development of covalent inhibitors plays a major role in recent drug discovery due to their potential excellent pharmacokinetics. Covalent inhibitors are small organic molecules which interact with specific target proteins and form a covalent bond, resulting an alteration of the protein conformation and subsequently inhibit the protein activity. The modifications of proteins by covalent inhibitors are generally irreversible with some exceptions. In this review, the commercial covalent inhibitors that interact with proteins via Michael additions, nucleophilic substitution, or disulfide linkage are reviewed. The discussion on various types of warheads in covalent inhibitors could inspire future rational drug design.

Cite this article

Dong Haoran, Subiding Tayier, Wang Xin, Lei Xiaoguang . Research Progress of Covalent Inhibitors[J]. Chinese Journal of Organic Chemistry, 2018 , 38(9) : 2296 -2306 . DOI: 10.6023/cjoc201804018

References

[1] Zhang, Y. K.; Lei, J. P.; Xie, D. Q. J. Am. Chem. Soc. 2015, 137, 70.
[2] Andrieu, J. P.; Guilmi, A. M. D.; Mouz, N.; Hoskins, J.; Jaskunas, S. R.; Gagnon, J.; Dideberg, O.; Vernet, T. J. Bacteriol. 1998, 180, 5652.
[3] Aronson, J. K. Meyler's Side Effects of Drugs, Elsevier Science, Amsterdam, 2016, p. 382.
[4] Drahl, C.; Cravatt, B. F.; Sorensen, E. J. Angew. Chem. Int. Ed. 2005, 44, 5788.
[5] Lu, L.; Michael, M.; Gu, Z. L.; Zhang, W. P. Sci. Rep. 2015, 5, 8783.
[6] Clement, L. L.; Tsakos, M.; Schaffert, E. S.; Scavenius, C.; Enghild, J. J.; Poulsen, T. B. Chem. Commun. 2015, 51, 12427.
[7] Uesugi, S.; Fujisawa, N.; Yoshida, J.; Watanabe, M.; Dan, S.; Yamori, T.; Shiono, Y.; Kimura, K. J. Antibiot. 2016, 69, 133.
[8] Albrecht, A.; Albrecht, L.; Janecki, T. Eur. J. Org. Chem. 2011, 2011, 2747.
[9] (a) Walker, E. H.; Pacold, M. E.; Perisic, O. Mol. Cell. 2000, 6, 909.
(b) Sorensen, E. J.; Drahl, C.; Cravatt, B. F. Angew. Chem., Int. Ed. 2005, 44, 5788.
[10] Bauman, J. E.; Jimeno, A.; Weissman, C.; Adkins, D.; Schnadig, I.; Beauregard, P.; Bowles, D. W.; Spira, A.; Levy, B.; Seetharamu, N.; Hausman, D.; Walker, L.; Rudin, C. M.; Shirai, K. Oral Oncol. 2015, 51, 383.
[11] Jones, J. B.; Middleton, H. W. Can. J. Chem. 1970, 48, 3819.
[12] Csuk, R.; Schwarz, S.; Siewert, B.; Kluge, R.; Strohl, D. Arch. Pharm. 2012, 345, 215.
[13] (a) Lei, X. G.; Yu, X. L.; Li, C. Org. Lett. 2010, 12, 4284.
(b) Lei, X. G.; Dong, T.; Li, C.; Wang, X.; Dian, L. Y.; Zhang, X. G.; Li. L.; Chen, S.; Cao, R.; Li, L.; Huang, N.; He, S. D. Nat. Commum. 2015, 6, 6522.
[14] Wei, L.; Wu, J.; Li, G.; Shi, N. Curr. Pharm. Des. 2012, 18, 1186.
[15] Díez-Dacal, B.; Perez-Sala, D. Cancer Lett. 2012, 320, 150.
[16] Grill, S. P.; Leung, C. H.; Lam, W.; Han, Q. B.; Sun, H. D.; Cheng, Y. C. Mol. Pharmacol. 2006, 70, 1946.
[17] Tanasova, M.; Sturla, S. J. Chem. Rev. 2012, 112, 3578.
[18] Cross, D. A. E.; Ashton, S. E.; Ghioghiu, S.; Eberlein, C.; Nebhan, C. A.; Spitzler, P. J.; Orme, J. P.; Finlay, M. R. V.; Ward, R. A.; Mellor, M. J.; Hughes, G.; Rahi, A.; Jacobs, V. N.; Brewer, M. R.; Mireille, E.; Sun, J.; Jin, H.; Ballard, P.; Al-Kadhimi, K.; Rowlinson, R.; Klinowska, T.; Richmond, G. H. P.; Cantarini, M.; Kim, D. W.; Ranson, M. R.; Pao, W. Cancer Discovery 2014, 4, 1046.
[19] Jackson, P. A.; Widen, J. C.; Harki, D. A.; Brummond, K. M. J. Med. Chem. 2017, 60, 839.
[20] Ward, R. A.; Anderton, M. J.; Ashton, S.; Bethel, P. A.; Box, M.; Butterworth, S. J. Med. Chem. 2013, 56, 7025.
[21] Zhou, W. J.; Ercan, D.; Chen, L.; Yun, C. H.; Li, D. N.; Capelletti, M.; Cortot, A. B.; Chirieac, L.; Iacob, R. E.; Padera, R.; Engen, J. R.; Wong, K. K.; Eck, M. J.; Gray, N. S.; Janne, P. A. Nature 2009, 462, 1070.
[22] Walter, A. O.; Sjin, R. T.; Haringsma, H. J.; Ohashi, K.; Sun, J.; Lee, K.; Dubrovskiy, A.; Labenski, M.; Zhu, Z. D.; Wang, Z. G.; Sheets, M.; St Martin, T.; Karp, R.; van Kalken, D.; Chaturvedi, P.; Niu, D. Q.; Nacht, M.; Petter, R. C.; Westlin, W.; Lin, K.; Jaw-Tsai, S.; Raponi, M.; van Dyke, T.; Etter, J.; Weaver, Z.; Pao, W.; Singh, J.; Simmons, A. D.; Harding, T. C.; Allen, A. Cancer Discovery 2013, 3, 1404.
[23] Campo, E.; Rule, S. Blood 2015, 125, 48.
[24] Wu, J. J.; Zhang, M. Z.; Liu, D. L. J. Hematol. Oncol. 2016, 9, 21.
[25] Barf, T.; Covey, T.; Izumi, R.; van der Kar, B.; Gulrajani, M.; van Lith, B.; van Hoek, M.; de Zwart, E.; Mittag, D.; Demont, D.; Verkaik, S.; Krantz, F.; Pearson, P. G.; Ulrich, R.; Kaptein, A. J. Pharmacol. Exp. Ther. 2017, 363, 240.
[26] Byrd, J. C.; Harrington, B.; O'Brien, S.; Jones, J. A.; Schuh, A.; Devereux, S.; Chaves, J.; Wierda, W. G.; Awan, F. T.; Brown, J. R.; Hillmen, P.; Stephens, D. M.; Ghia, P.; Barrientos, J. C.; Pagel, J. M.; Woyach, J.; Johnson, D.; Huang, J.; Wang, X.; Kaptein, A.; Lannutti, B. J.; Covey, T.; Fardis, M.; McGreivy, J.; Hamdy, A.; Rothbaum, W.; Izumi, R.; Diacovo, T. G.; Jojnson, A. J.; Furman, R. R. New. Engl. J. Med. 2016, 374, 323.
[27] Patel, V.; Balakrishnan, K.; Bibikova, E.; Ayres, M.; Keating, M. J.; Wierda, W. G.; Gandhi, V. Clin. Cancer Res. 2017, 23, 3734.
[28] Owens, T. D.; Yan, L. Compr. Med. Chem. Ⅲ 2017, 76.
[29] Meschini, E.; Mora-Vidal, R.; Martin, M. P.; Anscombe, E.; Staunton, D.; Geitmann, M.; Danielson, U. H.; Stanley, W. A.; Wang, L. Z.; Reuillon, T.; Golding, B. T.; Cano, C.; Newell, D. R.; Nobel, M. E. M.; Wedge, S. R.; Endicott, J. A.; Griffin, R. J. Chem. Biol. 2015, 22, 1159.
[30] Larraufie, M. H.; Yang, W. S.; Jiang, E.; Thomas, A. G.; Slusher, B. S.; Stockwell, B. R. Bioorg. Med. Chem. Lett. 2015, 25, 4787.
[31] Steinkopf, W. J. Prakt. Chem. 1927, 117, 1.
[32] Gold, A. M.; Fahrney, D. J. Am. Chem. Soc. 1963, 85, 997.
[33] Narayanan, A.; Jones, L. H. Chem. Sci. 2015, 6, 2650.
[34] Dong, J. J.; Krasnova, L.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2014, 53, 9430.
[35] Moss, D. E.; Berlanga, P.; Hagan, M. M.; Sandoval, H. Alzheimer Dis. Assoc. Disord. 1999, 13, 20.
[36] Corbett, T. H.; Leopold, W. R.; Dykes, D. J.; Roberts, B. J.; Griswold, D. P.; Schabel, F. M. Cancer Res. 1982, 42, 1707.
[37] Kumar, A. A.; Mangum, J. H.; Blankenship, D. T.; Freisheim, J. H. J. Biol. Chem. 1981, 256, 8970.
[38] Baker, B. R.; Wood, W. F. J. Med. Chem. 1969, 12, 214.
[39] Baker, B. R.; Hurlbut, J. A. J. Med. Chem. 1969, 12, 221.
[40] Baker, B. R.; Wood, W. F. J. Med. Chem. 1969, 12, 216.
[41] Karanian, D. A.; Brown, Q. B.; Makriyannis, A.; Kosten, T. A.; Bahr, B. A. J. Neurosci. 2005, 25, 7813.
[42] Kokotos, G.; Kotsovolou, S.; Constantinou-Kokotou, V.; Wu, G. S.; Olivecrona, G. Bioorg. Med. Chem. Lett. 2000, 10, 2803.
[43] Brummond, K. M.; Jackson, P. A.; Widen, J. C.; Harki, D. A. J. Med. Chem. 2017, 60, 839.
[44] Gushwa, N. N.; Kang, S. M.; Chen, J.; Taunton, J. J. Am. Chem. Soc. 2012, 134, 20214.
[45] Potashman, M. H.; Duggan, M. E. J. Med. Chem. 2009, 52, 1231.
[46] Fellenius, E.; Berglindh, T.; Sachs, G.; Olbe, L.; Elander, B.; Sjcstrand, S. E.; Wallmark, B. Nature 1981, 290, 159.
[47] Gonzμlez-Bello, C. Chem. Med. Chem. 2016, 11, 22.
[48] Andersson, T.; Rohss, K.; Bredberg, E.; Hassan-Alin, M. Aliment. Pharmacol. Ther. 2001, 15, 1563.
[49] Baillie, T. A. Angew. Chem., Int. Ed. 2016, 55, 13408.
[50] Gonzalez-Bello, C. Chem. Med. Chem. 2015, 11, 22.
[51] Baker, W. L.; White, C. M. Am. J. Cardiovasc. Drugs 2009, 9, 213.
[52] Wiviott, S. D.; Braunwald, E.; McCabe, C. H.; Montalescot, G.; Ruzyllo, W.; Gottlieb, S.; Neumann, F.; Ardissino, D.; De Servi, S.; Murphy, S. A.; Riesmeyer, J.; Weerakkody, G.; Gibson, C. M.; Antman, E. M. N. Engl. J. Med. 2007, 357, 2001.
[53] John, J.; Koshy, S. J. Am. Board Fam. Med. 2012, 25, 343.
[54] Njoroge, F. G.; Chen, X. X.; Shih, N. Y.; Piwinski, J. J. Acc. Chem. Res. 2008, 41, 50.
[55] Taunton, J.; Serafimova, I. M.; Pufall, M. A.; Krishnan, S.; Duda, K.; Cohen, M. S.; maglathlin, R. L.; McFarlan, J. M.; Miller, R. M.; Frodin, M. Nat. Chem. Biol. 2012, 5, 471.
[56] Moitessier, N.; De Cesco, S.; Kurian, J.; Dufresne, C.; Mit-termaier, A. K. Eur. J. Med. Chem. 2017, 138, 96.
[57] Bradshaw, J. W.; McFarland, J. M.; Paavilainen, V. O.; Bisconte, A.; Tam, D.; Phan, V. T.; Romanov, S.; Finkle, D.; Shu, J.; Patel, V.; Ton, T.; Li, X. Y.; Loughhead, D. G.; Nunn, P. A.; Karr, D. E.; Gerritsen, M. E.; Funk, J. O.; Owen, T. D.; Verner, E.; Brameld, K. A.; Hill, R. J.; Goldstein, D. M.; Taunton, J. Nat. Chem. Biol. 2015, 7, 525.
[58] Liu, Q. S.; Sabnis, Y.; Zhao, Z.; Zhang, T. H.; Buhrlage, S. J.; Jones, L. H.; Gray, N. S. Chem. Biol. 2013, 20, 146.

Outlines

/