Chinese Journal of Organic Chemistry >
ZnO-Promoted Wittig gem-Difluoroolefination of Aldehydes with [Ph3P+CF2H·Br-]
Received date: 2018-06-15
Revised date: 2018-07-06
Online published: 2018-07-24
Supported by
Project supported by the National Basic Research Program of China (973 Program, No. 2015CB931903), the National Natural Science Foundation of China (Nos. 21421002, 21472222, 21502214, 21672242), the Chinese Academy of Sciences (Nos. XDA02020105, XDA02020106), and the Key Research Program of Frontier Sciences (CAS) (No. QYZDJSSW-SLH049).
Wittig gem-difluoroolefination of aldehydes with difluoromethyl phosphonium salt (Ph3P+CF2H·Br-) by using zinc oxide as a base is described. Although the proton in the CF2H group is acidic and a base could easily lead to its deprotonation to form ylide (Ph3P+CF2-), the attack of the base at the positive phosphorus atom may also take place to produce a nucleophilic [HCF2-] equivalent, and then nucleophilic difluoromethylation instead of Wittig reaction would occur. The use of ZnO as the base favored the Wittig reaction and the nucleophilic difluoromethylation was not observed. Furthermore, the excessive ZnO and ZnⅡ salts produced from ZnO could be easily removed by filtration, which may be convenient for the purification process.
Yu Jiao , Lin Jinhong , Xiao Jichang . ZnO-Promoted Wittig gem-Difluoroolefination of Aldehydes with [Ph3P+CF2H·Br-][J]. Chinese Journal of Organic Chemistry, 2019 , 39(1) : 265 -269 . DOI: 10.6023/cjoc201806024
[1] (a) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Blackwell Publishing, Chichester, 2009.
(b) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
(c) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
(d) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
[2] (a) McDonald, I. A.; Lacoste, J. M.; Bey, P.; Palfreyman, M. G.; Zreika, M. J. Med. Chem. 1985, 28, 186.
(b) Weintraub, P. M.; Holland, A. K.; Gates, C. A.; Moore, W. R.; Resvick, R. J.; Bey, P.; Peet, N. P. Bioorg. Med. Chem. 2003, 11, 427.
(c) Altenburger, J.-M.; Lassalle, G. Y.; Matrougui, M.; Galtier, D.; Jetha, J.-C.; Bocskei, Z.; Berry, C. N.; Lunven, C.; Lorrain, J.; Herault, J.-P.; Schaeffer, P.; O'Connor, S. E.; Herbert, J.-M. Bioorg. Med. Chem. 2004, 12, 1713.
[3] (a) Nguyen, B. V.; Burton, D. J. J. Org. Chem. 1997, 62, 7758.
(b) Yokota, M.; Fujita, D.; Ichikawa, J. Org. Lett. 2007, 9, 4639.
(c) Qiao, Y.; Si, T.; Yang, M.-H.; Altman, R. A. J. Org. Chem. 2014, 79, 7122.
[4] (a) Tozer, M. J.; Herpin, T. F. Tetrahedron 1996, 52, 8619.
(b) Burton, D.; Yang, Z.-Y.; Qiu, W. Chem. Rev. 1996, 96, 1641.
(c) Ichikawa, J. J. Fluorine Chem. 2000, 105, 257.
(d) Chelucci, G. Chem. Rev. 2012, 112, 1344.
[5] (a) Mae, M.; Amii, H.; Uneyama, K. Tetrahedron Lett. 2000, 41, 7893.
(b) Amii, H.; Kobayashi, T.; Terasawa, H.; Uneyama, K. Org. Lett. 2001, 3, 3103.
(c) Ichikawa, J.; Ishibashi, Y.; Fukui, H. Tetrahedron Lett. 2003, 44, 707.
(d) Ichikawa, J.; Fukui, H.; Ishibashi, Y. J. Org. Chem. 2003, 68, 7800.
(e) Miura, T.; Ito, Y.; Murakami, M. Chem. Lett. 2008, 37, 1006.
[6] (a) Crowley, P. J.; Howarth, J. A.; Owton, W. M.; Percy, J. M.; Stansfield, K. Tetrahedron Lett. 1996, 37, 5975.
(b) Goegsig, T. M.; Soebjerg, L. S.; Lindhardt, A. T.; Jensen, K. L.; Skrydstrup, T. J. Org. Chem. 2008, 73, 3404.
[7] (a) Prakash, G. K. S.; Wang, Y.; Hu, J.; Olah, G. A. J. Fluorine Chem. 2005, 126, 1361.
(b) Zhao, Y.; Huang, W.; Zhu, L.; Hu, J. Org. Lett. 2010, 12, 1444.
(c) Wang, X.-P.; Lin, J.-H.; Xiao, J.-C.; Zheng, X. Eur. J. Org. Chem. 2014, 928.
(d) Cao, C.-R.; Ou, S.; Jiang, M.; Liu, J.-T. Tetrahedron Lett. 2017, 58, 482.
[8] (a) Edwards, M. L.; Stemerick, D. M.; Jarvi, E. T.; Matthews, D. P.; McCarthy, J. R. Tetrahedron Lett. 1990, 31, 5571.
(b) Piettre, S. R.; Cabanas, L. Tetrahedron Lett. 1996, 37, 5881.
[9] (a) Serafinowski, P. J.; Brown, C. A. Tetrahedron 2000, 56, 333.
(b) Nowak, I.; Robins, M. Org. Lett. 2005, 7, 721.
(c) Thomoson, C. S.; Martinez, H.; Dolbier, W. R., Jr. J. Fluorine Chem. 2013, 150, 53.
(d) Wang, F.; Li, L.; Ni, C.; Hu, J. Beilstein J. Org. Chem. 2014, 10, 344.
[10] (a) Herkes, F.; Burton, D. J. Org. Chem. 1967, 1311.
(b) Zheng, J.; Cai, J.; Lin, J.-H.; Guo, Y.; Xiao, J.-C. Chem. Commun. 2013, 49, 7513.
[11] Li, Q.; Lin, J.-H.; Deng, Z.-Y.; Zheng, J.; Cai, J.; Xiao, J.-C. J. Fluorine Chem. 2014, 163, 38.
[12] (a) Naae, D. G.; Burton, D. J. J. Fluorine Chem. 1971, 1, 123.
(b) Naae, D. G.; Burton, D. J. Synth. Commun. 1973, 3, 197.
[13] Zheng, J.; Lin, J.-H.; Cai, J.; Xiao, J.-C. Chem.-Eur. J. 2013, 19, 15261.
[14] (a) Deng, X.-Y.; Lin, J.-H.; Zheng, J.; Xiao, J.-C. Chem. Commun. 2015, 51, 8805.
(b) Zheng, J.; Lin, J.-H.; Deng, X.-Y.; Xiao, J.-C. Org. Lett. 2015, 17, 532.
(c) Zheng, J.; Lin, J.-H.; Yu, L.-Y.; Wei, Y.; Zheng, X.; Xiao, J.-C. Org. Lett. 2015, 17, 6150.
(d) Zheng, J.; Wang, L.; Lin, J.-H.; Xiao, J.-C.; Liang, S. H. Angew. Chem., Int. Ed. 2015, 54, 13236.
(e) Zheng, J.; Cheng, R.; Lin, J.-H.; Yu, D. H.; Ma, L.; Jia, L.; Zhang, L.; Wang, L.; Xiao, J.-C.; Liang, S. H. Angew. Chem., Int. Ed. 2017, 56, 3196.
(f) Yu, J.; Lin, J.-H.; Xiao, J.-C. Angew. Chem., Int. Ed. 2017, 56, 16669.
[15] Deng, Z.; Lin, J.-H.; Cai, J.; Xiao, J.-C. Org. Lett. 2016, 18, 3206.
[16] (a) Deng, Z.; Lin, J.-H.; Xiao, J.-C. Nat. Commun. 2016, 7, 10337.
(b) Deng, Z.; Liu, C.; Zeng, X.-L.; Lin, J.-H.; Xiao, J.-C. J. Org. Chem. 2016, 81, 12084.
[17] Nenajdenko, V. G.; Varseev, G. N.; Korotchenko, V. N.; Shastin, A. V.; Balenkova, E. S. J. Fluorine Chem. 2003, 124, 115-118.
[18] Ichitsuka, T.; Takanohashi, T.; Fujita, T.; Ichikawa, J. J. Fluorine Chem. 2015, 170, 29.
/
〈 |
|
〉 |