Reviews

Catalytic Function and Application of Cytochrome P450 Enzymes in Biosynthesis and Organic Synthesis

  • Jiang Yuanyuan ,
  • Li Shengying
Expand
  • a Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101;
    b University of Chinese Academy of Sciences, Beijing 100049

Received date: 2018-05-30

  Revised date: 2018-06-29

  Online published: 2018-07-24

Supported by

Project supported by the Natural Science Foundation of Shandong Province (No. ZR2017ZB0207) and the National Natural Science Foundation of China (Nos. 81741115, 21472204).

Abstract

Cytochrome P450 enzymes are widely distributed in nature, which mainly participate in xenobiotics metabolism and natural product biosynthesis. These enzymes are able to recognize various substrates to produce many useful oxidative products through diverse reaction types. P450 enzymes can catalyze selective oxidation of C-H bonds in their substrates under mild conditions. Therefore, a lot of P450 enzymes have been applied in the production of fine chemicals, drugs and chemical intermediates for quite a long time. With the development of protein engineering, redox partner engineering, substrate engineering, metabolic engineering and synthetic biology, it has become possible to obtain the P450 biocatalysts with the desired properties such as high activity, the substrate specificity of interest, and great selectivity to meet the industrial requirements, through rational design and direct evolution of P450 enzymes. Thus, the application scope of P450 enzymes in biosynthesis and organic synthesis has been expanded greatly. The types of reactions that can be catalyzed by P450 enzymes, and the strategies to broaden the reaction scope and to enhance the catalytic efficiency and selectivity are summarized. Finally, the challenges and prospects in the application of cytochrome P450 enzymes in biosynthesis and organic synthesis are discussed.

Cite this article

Jiang Yuanyuan , Li Shengying . Catalytic Function and Application of Cytochrome P450 Enzymes in Biosynthesis and Organic Synthesis[J]. Chinese Journal of Organic Chemistry, 2018 , 38(9) : 2307 -2323 . DOI: 10.6023/cjoc201805055

References

[1] (a) Urlacher, V. B.; Girhard, M. Trends Biotechnol. 2012, 30, 26.
(b) Keasling, J. D.; Mendoza, A.; Baran, P. S. Nature 2012, 492, 188.
[2] Guengerich, F. P. Chem. Res. Toxicol. 2001, 14, 611.
[3] Sakaki, T. Biol. Pharm. Bull. 2012, 35, 844.
[4] Mcintosh, J. A.; Farwell, C. C.; Arnold, F. H. Curr. Opin. Chem. Biol. 2014, 19, 126.
[5] Arnold, F. H. Angew. Chem., Int. Ed. 2017. 56, 4143.
[6] Denisov, I. G.; Maris, T. M.; Sligar, S. G.; Schlichting, I. Chem. Rev. 2005, 105, 2253.
[7] (a) Lu, A. Y.; Coon, M. J. J. Biol. Chem. 1968, 243, 1331.
(b) Hildebrandt, A.; Remmer, H.; Estabrook, R. W. Biochem. Biophys. Res. Commun. 1968, 30, 607.
[8] Li, Z.; Zhang, W.; Li, S. Y. Acta Microbiol. Sin. 2016, 56, 496(in Chinese). (李众, 张伟, 李盛英, 微生物学报, 2016, 56, 496.)
[9] Nebert, D. W.; Adesnik, M.; Coon, M. J.; Estabrook, R. W.; Gonzalez, F. J.; Guengerich, F. P.; Gunsalus, I. C.; Johnson, E. F.; Kemper, B.; Levin, W. DNA 1987, 6, 1.
[10] Ruettinger, R. T.; Fulco, A. J. J. Biol. Chem. 1981, 256, 5728.
[11] Daiber, A.; Shoun, H.; Ullrich, V. J. Inorg. Biochem. 2005, 99, 185.
[12] Hasemann, C. A.; Kurumbail, R. G.; Boddupalli, S. S.; Peterson, J. A.; Deisenhofer, J. Structure 1995, 3, 41.
[13] Presnell, S. R.; Cohen, F. E. Proc. Natl. Acad. Sci. U. S. A. 1989, 86, 6592.
[14] Gotoh, O. J. Biol. Chem. 1992, 267, 83.
[15] Pylypenko, O.; Schlichting, I. Annu. Rev. Biochem. 2004, 73, 991.
[16] (a) Conrad, H. E.; Lieb, K.; Gunsalus, I. C. J. Biol. Chem. 1965, 240, 4029.
(b) Katagiri, M.; Ganguli, B. N.; Gunsalus, I. C. J. Biol. Chem. 1968, 243, 3543.
[17] (a) Schlichting, I.; Berendzen, J.; Chu, K.; Stock, A. M.; Maves, S. A.; Benson, D. E.; Sweet, R. M.; Ringe, D.; Petsko, G. A.; Sligar, S. G. Science 2000, 287, 1615.
(b) Groves, J. T. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 3569.
(c) Shaik, S.; Cohen, S.; Wang, Y.; Chen, H.; Kumar, D.; Thiel, W. Chem. Rev. 2010, 110, 949.
(d) Guengerich, F. P. J. Biochem. Mol. Toxicol. 2007, 21, 163.
[18] Montellano, P. O. D. Cytochrome P450:Structure, Mechanism, and Biochemistry, 4th ed., Springer International Publishing, Switzerland, 2015, p. 1.
[19] Rude, M. A.; Baron, T. S.; Brubaker, S.; Alibhai, M.; Cardayre, S. B. D.; Schirmer, A. Appl. Environ. Microbiol. 2011, 77, 1718.
[20] (a) Cryle, M. J.; De Voss, J. J. Angew. Chem., Int. Ed. 2006, 45, 8221.
(b) Jin, S.; Makris, T. M.; Bryson, T. A.; Sligar, S. G.; Dawson, J. H. J. Am. Chem. Soc. 2003, 125, 3406.
[21] Barry, S. M.; Kers, J. A.; Johnson, E. G.; Song, L.; Aston, P. R.; Bhumit, P.; Krasnoff, S. B.; Crane, B. R.; Gibson, D. M.; Rosemary, L. Nat. Chem. Biol. 2012, 8, 814.
[22] Zhang, X.; Li, S. Nat. Prod. Rep. 2017, 34, 1061.
[23] Zhu, G. D.; Okamura, W. H. Chem. Rev. 1995, 95, 1877.
[24] Kawauchi, H.; Sasaki, J.; Adachi, T.; Hanada, K.; Beppu, T.; Horinouchi, S. Biochim. Biophys. Acta 1994, 1219, 179.
[25] Yasutake, Y.; Fujii, Y.; Cheon, W. K.; Arisawa, A.; Tamura, T. Acta Crystallogr. 2009, 65, 372.
[26] Peters, M. W.; Meinhold, P.; Glieder, A.; Arnold, F. H. J. Am. Chem. Soc. 2003, 125, 13442.
[27] Xu, F.; Bell, S. G.; Lednik, J.; Insley, A.; Rao, Z.; Wong, L. L. Angew. Chem., Int. Ed. 2005, 117, 4097.
[28] Du, L.; Dong, S.; Zhang, X.; Jiang, C.; Chen, J.; Yao, L.; Wang, X.; Wan, X.; Liu, X.; Wang, X.; Huang, S.; Cui, Q.; Feng, Y.; Liu, S.; Li, S. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, E5129.
[29] Woodley, J. M. Trends Biotechnol. 2008, 26, 321.
[30] Ogura, H.; Nishida, C. R.; Hoch, U. R.; Perera, R.; Dawson, J. H.; Pr, O. D. M. Biochemistry 2004, 43, 14712.
[31] (a) Katsuki, T.; Sharpless, K. B. J. Am. Chem. Soc. 1980, 102, 5974.
(b) Islam, S. M.; Roy, A. S.; Mondal, P.; Mobarok, M.; Roy, B.; Salam, N.; Paul, S.; Mondal, S. Monatsh. Chem. 2012, 143, 815.
[32] Kubo, T.; Peters, M. W.; Meinhold, P.; Arnold, F. H. Chemistry 2006, 12, 1216.
[33] (a) Podust, L. M.; Sherman, D. H. Nat. Prod. Rep. 2012, 29, 1251.
(b) Li, S.; Tietz, D. R.; Rutaganira, F. U.; Kells, P. M.; Anzai, Y.; Kato, F.; Pochapsky, T. C.; Sherman, D. H.; Podust, L. M. J. Biol. Chem. 2012, 287, 37880.
[34] Anzai, Y.; Li, S.; Chaulagain, M. R.; Kinoshita, K.; Kato, F.; Montgomery, J.; Sherman, D. H. Chem. Biol. 2008, 15, 950.
[35] Chooi, Y. H.; Hong, Y. J.; Cacho, R. A.; Tantillo, D. J.; Tang, Y. J. Am. Chem. Soc. 2013, 135, 16805.
[36] Coelho, P. S.; Brustad, E. M.; Kannan, A.; Arnold, F. H. Science 2013, 339, 307.
[37] Halo, L. M.; Heneghan, M. N.; Yakasai, A. A.; Song, Z.; Williams, K.; Bailey, A. M.; Cox, R. J.; Lazarus, C. M.; Simpson, T. J. J. Am. Chem. Soc. 2008, 130, 17988.
[38] Tsunematsu, Y.; Ishikawa, N.; Wakana, D.; Goda, Y.; Noguchi, H.; Moriya, H.; Hotta, K.; Watanabe, K. Nat. Chem. Biol. 2013, 9, 818.
[39] Guengerich, F. P.; Munro, A. W. J. Biol. Chem. 2013, 288, 17065.
[40] Mizutani, M.; Sato, F. Arch. Biochem. Biophys. 2011, 507, 194.
[41] Gesell, A.; Rolf, M.; Ziegler, J.; Díaz Chávez, M. L.; Huang, F. C.; Kutchan, T. M. J. Biol. Chem. 2009, 284, 24432.
[42] Ikezawa, N.; Iwasa, K.; Sato, F. J. Biol. Chem. 2008, 283, 8810.
[43] Mazzaferro, L. S.; Hüttel, W.; Fries, A.; Müller, M. J. Am. Chem. Soc. 2015, 137, 12289.
[44] Kraus, P. F.; Kutchan, T. M. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 2071.
[45] Irmler, S.; Schroder, G.-P. B.; Crouch, N. P.; Hotze, M.; Schmidt, J. Plant J. 2000, 24, 797.
[46] Lin, H. C.; Chooi, Y. H.; Dhingra, S.; Xu, W.; Calvo, A. M.; Tang, Y. J. Am. Chem. Soc. 2013, 135, 4616.
[47] Akashi, T.; Aoki, T.; Ayabe, S. FEBS Lett. 1998, 431, 287.
[48] Li, R.; Reed, D. W.; Liu, E.; Nowak, J.; Pelcher, L. E.; Page, J. E.; Covello, P. S. Chem. Biol. 2006, 13, 513.
[49] (a) Brosen, K. Drug Metabol. Pers. Ther. 2015, 30, 147.
(b) Morinobu, S.; Tanaka, T.; Kawakatsu, S.; Totsuka, S.; Koyama, E.; Chiba, K.; Ishizaki, T.; Kubota, T. Psychiatry Clin. Neurosci. 1997, 51, 253.
[50] Yu, F.; Li, M.; Xu, C.; Wang, Z.; Zhou, H.; Yang, M.; Chen, Y.; Tang, L.; He, J. PloS One 2013, 8, e81526.
[51] Prier, C. K.; Zhang, R. K.; Buller, A. R.; Brinkmannchen, S.; Arnold, F. H. Nat. Chem. 2017, 9, 629.
[52] Mcintosh, J. A.; Coelho, P. S.; Farwell, C. C.; Wang, Z. J.; Lewis, J. C.; Brown, T. R.; Arnold, F. H. Angew. Chem., Int. Ed. 2013, 52, 9309.
[53] Hammer, S. C.; Kubik, G.; Watkins, E.; Huang, S.; Minges, H.; Arnold, F. H. Science 2017, 358, 215.
[54] Li, A.; Wang, B.; Ilie, A.; Dubey, K. D.; Bange, G.; Korendovych, I. V.; Shaik, S.; Reetz, M. T. Nat. Commun. 2017, 8, 14876.
[55] Kan, S. B.; Lewis, R. D.; Chen, K.; Arnold, F. H. Science 2016, 354, 1048.
[56] (a) Mcreynolds, M. D.; Dougherty, J. M.; Hanson, P. R. Chem. Rev. 2004, 35, 2239.
(b) Feng, M.; Tang, B.; Liang, S. H.; Jiang, X. Curr. Top. Med. Chem. 2016, 16, 1200.
[57] Ma, N.; Chen, Z.; Chen, J.; Chen, J.; Wang, C.; Zhou, H.; Yao, L.; Shoji, O.; Watanabe, Y.; Cong, Z. Angew. Chem., Int. Ed. 2018, 57, 7628.
[58] Bornscheuer, U. T. Angew. Chem., Int. Ed. 1998, 37, 65.
[59] Yang, J.; Ruff, A. J.; Arlt, M.; Schwaneberg, U. Biotechnol. Bioeng. 2017, 114, 1921.
[60] Georgescu, R.; Bandara, G.; Sun, L. Methods Mol. Biol. 2003, 231, 75.
[61] Crameri, A.; Raillard, S. A.; Bermudez, E.; Stemmer, W. P. Nature 1998, 391, 288.
[62] Reetz, M. T.; Carballeira, J. D. Nat. Protoc. 2007, 2, 891.
[63] Reetz, M. T.; Bocola, M.; Carballeira, J. D.; Zha, D.; Vogel, A. Angew. Chem., Int. Ed. 2010, 117, 4264.
[64] Roiban, G. D.; Reetz, M. T. Chem. Commun. 2015, 51, 2208.
[65] Warman, A. J.; Roitel, O.; Neeli, R.; Girvan, H. M.; Seward, H. E.; Murray, S. A.; Mclean, K. J.; Joyce, M. G.; Toogood, H.; Holt, R. A. Biochem. Soc. Trans. 2005, 33, 747.
[66] Kille, S.; Zilly, F. E.; Acevedo, J. P.; Reetz, M. T. Nat. Chem. 2011, 3, 738.
[67] Chen, K.; Huang, X.; Kan, S.; Zhang, R. K.; Arnold, F. H. Science 2018, 360, 71.
[68] Wong, L. L.; Whitehouse, C. J. C.; Yang, W.; Yorke, J. A.; Blanford, C. F.; Bell, S. G.; Bartlam, M.; Rao, Z. Drug Metab. Rev. 2010, 11, 2549.
[69] Seifert, A.; Vomund, S.; Grohmann, K.; Kriening, S.; Urlacher, V. B.; Laschat, S.; Pleiss, J. ChemBioChem 2009, 10, 1426.
[70] Sherman, D. H.; Li, S.; Yermalitskaya, L. V.; Kim, Y.; Smith, J. A.; Waterman, M. R.; Podust, L. M. J. Biol. Chem. 2006, 281, 26289.
[71] Vermeulen, N. P. E.; Graaf, C. D.; Stjernschantz, E.; Feenstra, A.; Oostenbrink, B. C. International Society for the Study of Xenobiotics Meeting, Sendai, Japan, 2007, pp. 223~232.
[72] Morigasaki, S.; Takata, K.; Sanada, Y.; Wada, K.; Yee, B. C.; Shin, S.; Buchanan, B. B. Arch. Biochem. Biophys. 1990, 283, 75.
[73] Sibbesen, O.; De Voss, J. J.; Montellano, P. R. J. Biol. Chem. 1996, 271, 22462.
[74] Lambeth, J. D.; Seybert, D. W.; Kamin, H. J. Biol. Chem. 1980, 255, 4667.
[75] Neunzig, I.; Widjaja, M.; Peters, F. T.; Maurer, H. H.; Hehn, A.; Bourgaud, F.; Bureik, M. Appl. Biochem. Biotechnol. 2013, 170, 1751.
[76] Ma, L.; Du, L.; Chen, H.; Sun, Y.; Huang, S.; Zheng, X.; Kim, E. S.; Li, S. Appl. Environ. Microbiol. 2015, 81, 6268.
[77] Zhang, W.; Liu, Y.; Yan, J.; Cao, S.; Bai, F.; Yang, Y.; Huang, S.; Yao, L.; Anzai, Y.; Kato, F.; Podust, L. M.; Sherman, D. H.; Li, S. J. Am. Chem. Soc. 2014, 136, 3640.
[78] Liu, Y.; Wang, C.; Yan, J.; Zhang, W.; Guan, W.; Lu, X.; Li, S. Biotechnol. Biofuels 2014, 256, 130.
[79] Ro, D. K.; Paradise, E. M.; Ouellet, M.; Fisher, K. J.; Newman, K. L.; Ndungu, J. M.; Ho, K. A.; Eachus, R. A.; Ham, T. S.; Kirby, J. Nature 2006, 440, 940.
[80] (a) Chefson, A.; Auclair, K. Mol. BioSyst. 2006, 2, 462.
(b) Schewe, H.; Holtmann, D.; Schrader, J. Appl. Microbiol. Biotechnol. 2009, 83, 849.
[81] Shrestha, P.; Oh, T. J.; Sohng, J. K. Biotechnol. Lett. 2008, 30, 1101.
[82] Li, S.; Chaulagain, M. R.; Knauff, A. R.; Podust, L. M.; Montgomery, J.; Sherman, D. H. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 18463.
[83] Narayan, A. R.; Jiménez-Osés, G.; Liu, P; Negretti, S.; Zhao, W; Gilbert, M. M.; Ramabhadran, R. O.; Yang, Y. F.; Furan, L. R.; Li, Z.; Podust, L. M.; Montgomery, J.; Houk, K. N.; Sherman, D. H. Nat. Chem. 2015, 7, 653.
[84] Key, H. M.; Dydio, P.; Clark, D. S.; Hartwig, J. F. Nature 2016, 534, 534.
[85] Hansen, D. A.; Rath, C. M.; Eisman, E. B.; Narayan, A. R.; Kittendorf, J. D.; Mortison, J. D.; Yoon, Y. J.; Sherman, D. H. J. Am. Chem. Soc. 2013, 135, 11232.
[86] (a) Perez, D. I.; Grau, M. M.; Arends, I. W. C. E.; Hollmann, F. Chem. Commun. 2010, 41, 6848.
(b) Girhard, M.; Kunigk, E.; Tihovsky, S.; Shumyantseva, V. V.; Urlacher, V. B. Biotechnol. Appl. Biochem. 2013, 60, 111.
(c) Paul, C. E.; Churakova, E.; Maurits, E.; Girhard, M.; Urlacher, V. B.; Hollmann, F. Biorg. Med. Chem. 2014, 22, 5692.

Outlines

/