Reviews

Research Progress in Biocontainment of Genetically Modified Organisms

  • Meng Fankang ,
  • Lou Chunbo
Expand
  • a CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101;
    b College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100149

Received date: 2018-06-13

  Revised date: 2018-08-08

  Online published: 2018-08-22

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 31470818, 31722002) and Ministry of Science and Technology of the People's Republic of China (No. 2015CB910300).

Abstract

With the rapid progress of synthetic biology and other related filed, there is a continuous growth of the applications of genetically modified organisms in many aspects, including industry, agriculture, health and environment. However, unintended release or uncontrolled propagation of these genetically modified organisms may cause significant side effects to the nature ecological environment. In order to eradicate the escaping problem and horizontal gene transfer between artificial and natural organisms, many researches have been focused on how to limit genetically modified organisms to a controlled environment. The research progress of biocontainment of genetically modified organisms mainly from three aspects of traditional biocontainment strategies, the orthogonalization of central dogma and the design of complex genetic networks is highlighted. It is believed that the advanced biocontainment technology would promote the further application of synthetic biology.

Cite this article

Meng Fankang , Lou Chunbo . Research Progress in Biocontainment of Genetically Modified Organisms[J]. Chinese Journal of Organic Chemistry, 2018 , 38(9) : 2231 -2242 . DOI: 10.6023/cjoc201806018

References

[1] Zhang, H. M.; Lou, C. Sci. Soc. 2014, 4, 26(in Chinese). (张浩千, 娄春波, 科学与社会, 2014, 4, 26.)
[2] (a) Khalil, A. S.; Collins, J. J. Nat. Rev. Genet. 2010, 11, 367.
(b) Lee, J. W.; Na, D.; Park, J. M.; Lee, J.; Choi, S.; Lee, S. Y. Nat. Chem. Biol. 2012, 8, 536.
(c) Cameron, D. E.; Bashor, C. J.; Collins, J. J. Nat. Rev. Microbiol. 2014, 12, 381.
[3] Redford, K. H.; Adams, W.; Mace, G. M. PLoS Biol. 2013, 11, e1001530.
[4] Alphey, L.; Alphey, N. PLoS Pathog. 2014, 10, e1003909.
[5] (a) Carmichael, R. E.; Boyce, A.; Matthewman, C.; Patron, N. J. New Phytol. 2015, 208, 20.
(b) Patron, N. J.; Orzaez, D.; Marillonnet, S.; Warzecha, H.; Matthewman, C.; Youles, M.; Raitskin, O.; Leveau, A.; Farre, G.; Rogers, C.; Smith, A.; Hibberd, J.; Webb, A. A.; Locke, J.; Schornack, S.; Ajioka, J.; Baulcombe, D. C.; Zipfel, C.; Kamoun, S.; Jones, J. D.; Kuhn, H.; Robatzek, S.; Van Esse, H. P.; Sanders, D.; Oldroyd, G.; Martin, C.; Field, R.; O'Connor, S.; Fox, S.; Wulff, B.; Miller, B.; Breakspear, A.; Radhakrishnan, G.; Delaux, P. M.; Loque, D.; Granell, A.; Tissier, A.; Shih, P.; Brutnell, T. P.; Quick, W. P.; Rischer, H.; Fraser, P. D.; Aharoni, A.; Raines, C.; South, P. F.; Ane, J. M.; Hamberger, B. R.; Langdale, J.; Stougaard, J.; Bouwmeester, H.; Udvardi, M.; Murray, J. A.; Ntoukakis, V.; Schafer, P.; Denby, K.; Edwards, K. J.; Osbourn, A.; Haseloff, J. New Phytol. 2015, 208, 13.
[6] Zhang, Y.; Chen, J.; Cui, X.; Luo, D.; Xia, H.; Dai, J.; Zhu, Z.; Hu, W. Sci. Rep. 2015, 5, 7614.
[7] (a) Alphey, L. Annu. Rev. Entomol. 2014, 59, 205.
(b) Gantz, V. M.; Jasinskiene, N.; Tatarenkova, O.; Fazekas, A.; Macias, V. M.; Bier, E.; James, A. A. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, E6736.
(c) Harris, A. F.; Nimmo, D.; McKemey, A. R.; Kelly, N.; Scaife, S.; Donnelly, C. A.; Beech, C.; Petrie, W. D.; Alphey, L. Nat. Biotechnol. 2011, 29, 1034.
(d) Hammond, A.; Galizi, R.; Kyrou, K.; Simoni, A.; Siniscalchi, C.; Katsanos, D.; Gribble, M.; Baker, D.; Marois, E.; Russell, S.; Burt, A.; Windbichler, N.; Crisanti, A.; Nolan, T. Nat. Biotechnol. 2016, 34, 78.
(e) Lacroix, R.; McKemey, A. R.; Raduan, N.; Kwee Wee, L.; Hong Ming, W.; Guat Ney, T.; Rahidah, A. A. S.; Salman, S.; Subramaniam, S.; Nordin, O.; Hanum, A. T. N.; Angamuthu, C.; Marlina Mansor, S.; Lees, R. S.; Naish, N.; Scaife, S.; Gray, P.; Labbe, G.; Beech, C.; Nimmo, D.; Alphey, L.; Vasan, S. S.; Han Lim, L.; Wasi, A. N.; Murad, S. PLoS One 2012, 7, e42771.
[8] (a) Rovner, A. J.; Haimovich, A. D.; Katz, S. R.; Li, Z.; Grome, M. W.; Gassaway, B. M.; Amiram, M.; Patel, J. R.; Gallagher, R. R.; Rinehart, J.; Isaacs, F. J. Nature 2015, 527.
(b) Mandell, D. J.; Lajoie, M. J.; Mee, M. T.; Takeuchi, R.; Kuznetsov, G.; Norville, J. E.; Gregg, C. J.; Stoddard, B. L.; Church, G. M. Nature 2015, 518, 55.
(c) Lajoie, M. J.; Rovner, A. J.; Goodman, D. B.; Aerni, H. R.; Haimovich, A. D.; Kuznetsov, G.; Mercer, J. A.; Wang, H. H.; Carr, P. A.; Mosberg, J. A.; Rohland, N.; Schultz, P. G.; Jacobson, J. M.; Rinehart, J.; Church, G. M.; Isaacs, F. J. Science 2013, 342, 357.
[9] (a) Marlière, P.; Patrouix, J.; Döring, V.; Herdewijn, P.; Tricot, S.; Cruveiller, S.; Bouzon, M.; Mutzel, R. Angew. Chem., Int. Ed. 2011, 50, 7109.
(b) Pezo, V.; Liu, F. W.; Abramov, M.; Froeyen, M.; Herdewijn, P.; Marliere, P. Angew. Chem., Int. Ed. 2013, 52, 8139.
(c) Malyshev, D. A.; Dhami, K.; Lavergne, T.; Chen, T.; Dai, N.; Foster, J. M.; Correa, I. R.; Romesberg, F. E. Nature 2014, 509, 385.
(d) Malyshev, D. A.; Dhami, K.; Lavergne, T.; Chen, T.; Dai, N.; Foster, J. M.; Correa, I. R., Jr.; Romesberg, F. E. Nature 2014, 509, 385.
[10] (a) de Lorenzo, V. In Handbook of Hydrocarbon and Lipid Microbiologyed, Springer, Berlin, Heidelberg, 2010, p. 2435.
(b) Solé, R. V.; Montañez, R.; Duran-Nebreda, S. Biology Direct 2015, 10, 37.
[11] Landrain, T.; Meyer, M.; Perez, A. M.; Sussan, R. Syst. Synth. Biol. 2013, 7, 115.
[12] Berg, P.; Baltimore, D.; Brenner, S.; Roblin, R. O.; Singer, M. F. Science 1975, 188, 991.
[13] Dana, G. V.; Kuiken, T.; Rejeski, D.; Snow, A. A. Nature 2012, 483, 29.
[14] Wilson, D. J. Acc. Res. 1993, 3, 177.
[15] (a) Wang, Z.; Xu, W.; Liu, L.; Zhu, T. F. Nat. Chem. 2016, 8, 698;
(b) Steidler, L.; Neirynck, S.; Huyghebaert, N.; Snoeck, V.; Ver-meire, A.; Goddeeris, B.; Cox, E.; Remon, J. P.; Remaut, E. Nat. Biotechnol. 2003, 21, 785;
(c) Cohen, S. S.; Barner, H. D. J. Biol. Chem. 1957, 226, 631.
[16] Curtiss, R.; Inoue, M.; Pereira, D.; Hsu, J. C.; Alexander, L.; Rock, L. In Molecular of Cloning of Recombinant DNA, Elsevier, Amsterdam, Netherlands, 1977, p. 99.
[17] Steidler, L.; Neirynck, S.; Huyghebaert, N.; Snoeck, V.; Vermeire, A.; Goddeeris, B.; Cox, E.; Remon, J. P.; Remaut, E. Nat. Biotechnol. 2003, 21, 785.
[18] Nguyen, L. V.; Cox, K. M.; Ke, J. S.; Peele, C. G.; Dickey, L. F. Transgenic Res. 2012, 21, 1071.
[19] Hirota, R.; Abe, K.; Katsuura, Z.; Noguchi, R.; Moribe, S.; Motomura, K.; Ishida, T.; Alexandrov, M.; Funabashi, H.; Ikeda, T.; Kuroda, A. Sci. Rep.-Uk 2017, 7.
[20] Molin, S.; Klemm, P.; Poulsen, L. K.; Biehl, H.; Gerdes, K.; Andersson, P. Bio-Technology 1987, 5, 1315.
[21] Contreras, A.; Molin, S.; Ramos, J. L. Appl. Environ. Microb. 1991, 57, 1504.
[22] Szafranski, P.; Mello, C. M.; Sano, T.; Smith, C. L.; Kaplan, D. L.; Cantor, C. R. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 1059.
[23] Ronchel, M. C.; Ramos, J. L. Appl. Environ. Microbiol. 2001, 67, 2649.
[24] Oliver, M. J.; Quisenberry, J. E.; Trolinder, N. L. G.; Keim, D. L. Google Patents 1998.
[25] Heuer, H.; Smalla, K. Environ. Biosaf. Res. 2007, 6, 3.
[26] Lyon, D. Y.; Monier, J. M.; Dupraz, S.; Freissinet, C.; Simonet, P.; Vogel, T. M. Astrobiology 2010, 10, 285.
[27] Torres, B.; Jaenecke, S.; Timmis, K. N.; Garcia, J. L.; Diaz, E. Environ. Microbiol. 2000, 2, 555.
[28] Caliando, B. J.; Voigt, C. A. Nat. Commun. 2015, 6.
[29] Wright, O.; Delmans, M.; Stan, G.-B.; Ellis, T. ACS Synth. Biol. 2014, 4, 307.
[30] Schmidt, M.; de Lorenzo, V. FEBS Lett. 2012, 586, 2199.
[31] Liu, C. C.; Schultz, P. G. Annu. Rev. Biochem. 2010, 79, 413.
[32] Wang, L.; Brock, A.; Herberich, B.; Schultz, P. G. Science 2001, 292, 498.
[33] Chin, J. W.; Cropp, T. A.; Anderson, J. C.; Mukherji, M.; Zhang, Z. W.; Schultz, P. G. Science 2003, 301, 964.
[34] Wang, H. H.; Isaacs, F. J.; Carr, P. A.; Sun, Z. Z.; Xu, G.; Forest, C. R.; Church, G. M. Nature 2009, 460, 894.
[35] Isaacs, F. J.; Carr, P. A.; Wang, H. H.; Lajoie, M. J.; Sterling, B.; Kraal, L.; Tolonen, A. C.; Gianoulis, T. A.; Goodman, D. B.; Reppas, N. B.; Emig, C. J.; Bang, D.; Hwang, S. J.; Jewett, M. C.; Jacobson, J. M.; Church, G. M. Science 2011, 333, 348.
[36] Ostrov, N.; Landon, M.; Guell, M.; Kuznetsov, G.; Teramoto, J.; Cervantes, N.; Zhou, M.; Singh, K.; Napolitano, M. G.; Moos-burner, M.; Shrock, E.; Pruitt, B. W.; Conway, N.; Goodman, D. B.; Gardner, C. L.; Tyree, G.; Gonzales, A.; Wanner, B. L.; Norville, J. E.; Lajoie, M. J.; Church, G. M. Science 2016, 353, 819.
[37] (a) Wang, K.; Schmied, W. H.; Chin, J. W. Angew. Chem., Int. Ed. 2012, 51, 2288;
(b) Niu, W.; Schultz, P. G.; Guo, J. ACS Chem. Biol. 2013, 8, 1640;
(c) Anderson, J. C.; Wu, N.; Santoro, S. W.; Lakshman, V.; King, D. S.; Schultz, P. G. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 7566.
[38] Tack, D. S.; Ellefson, J. W.; Thyer, R.; Wang, B.; Gollihar, J.; Forster, M. T.; Ellington, A. D. Nat. Chem. Biol. 2016, 12, 138.
[39] Wang, N. X.; Li, Y.; Niu, W.; Sun, M.; Cerny, R.; Li, Q. S.; Guo, J. T. Angew. Chem., Int. Ed. 2014, 53, 4867.
[40] Si, L. L.; Xu, H.; Zhou, X. Y.; Zhang, Z. W.; Tian, Z. Y.; Wang, Y.; Wu, Y. M.; Zhang, B.; Niu, Z. L.; Zhang, C. L.; Fu, G.; Xiao, S. L.; Xia, Q.; Zhang, L. H.; Zhou, D. M. Science 2016, 354, 1170.
[41] Kimoto, M.; Kawai, R.; Mitsui, T.; Yokoyama, S.; Hirao, I. Nucleic Acids Res. 2009, 37.
[42] Yang, Z. Y.; Hutter, D.; Sheng, P. P.; Sismour, A. M.; Benner, S. A. Nucleic Acids Res. 2006, 34, 6095.
[43] Yang, Z. Y.; Chen, F.; Alvarado, J. B.; Benner, S. A. J. Am. Chem. Soc. 2011, 133, 15105.
[44] Kim, H. J.; Leal, N. A.; Hoshika, S.; Benner, S. A. J. Org. Chem. 2014, 79, 3194.
[45] Leconte, A. M.; Hwang, G. T.; Matsuda, S.; Capek, P.; Hari, Y.; Romesberg, F. E. J. Am. Chem. Soc. 2008, 130, 2336.
[46] Seo, Y. J.; Hwang, G. T.; Ordoukhanian, P.; Romesberg, F. E. J. Am. Chem. Soc. 2009, 131, 14596.
[47] Malyshev, D. A.; Dhami, K.; Lavergne, T.; Chen, T. J.; Dai, N.; Foster, J. M.; Correa, I. R.; Romesberg, F. E. Nature 2014, 509, 385.
[48] Zhang, Y.; Ptacin, J. L.; Fischer, E. C.; Aerni, H. R.; Caffaro, C. E.; Jose, K. S.; Feldman, A. W.; Turner, C. R.; Romesberg, F. E. Nature 2017, 551, 644.
[49] Zhang, Y.; Lamb, B. M.; Feldman, A. W.; Zhou, A. X.; Lavergne, T.; Li, L.; Romesberg, F. E. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 1317.
[50] Lopez, G.; Anderson, J. C. ACS Synth. Biol. 2015, 4, 1279.
[51] Ravikumar, A.; Arrieta, A.; Liu, C. C. Nat. Chem. Biol. 2014, 10, 175.
[52] Basu, R. S.; Murakami, K. S., In Nucleic Acid Polymerasesed, Springer, Berlin, Heidelberg, 2014, p. 237.
[53] Rackham, O.; Chin, J. W. Nat. Chem. Biol. 2005, 1, 159.
[54] Chubiz, L. M.; Rao, C. V. Nucleic Acids Res. 2008, 36, 4038.
[55] An, W.; Chin, J. W. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 8477.
[56] Orelle, C.; Carlson, E. D.; Szal, T.; Florin, T.; Jewett, M. C.; Mankin, A. S. Nature 2015, 524, 119.
[57] Jia, B.; Qi, H.; Li, B. Z.; Pan, S.; Liu, D.; Liu, H.; Cai, Y.; Yuan, Y. J. ACS Synth. Biol. 2017, 6, 2108.
[58] Wang, Z.; Xu, W.; Liu, L.; Zhu, T. F. Nat. Chem. 2016, 8, 698.
[59] Knudsen, S. M.; Karlstrom, O. H. Appl. Environ. Microb. 1991, 57, 85.
[60] Bej, A. K.; Perlin, M. H.; Atlas, R. M. Appl. Environ. Microbiol. 1988, 54, 2472.
[61] Chan, C. T.; Lee, J. W.; Cameron, D. E.; Bashor, C. J.; Collins, J. J. Nat. Chem. Biol. 2016, 12, 82.
[62] Gallagher, R. R.; Patel, J. R.; Interiano, A. L.; Rovner, A. J.; Isaacs, F. J. Nucl. Acids Res. 2015, 43, 1945.
[63] Cai, Y.; Agmon, N.; Choi, W. J.; Ubide, A.; Stracquadanio, G.; Caravelli, K.; Hao, H.; Bader, J. S.; Boeke, J. D. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 1803.
[64] Schmidt, M.; Pei, L. Toxicol. Sci. 2010, 120, S204.

Outlines

/