Reviews

Recent Progress on Endoplasmic Reticulum-Targetable Fluorescence Probe

Expand
  • a School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020;
    b International Healthcare Innovation Institute, Jiangmen 529000;
    c Faculty of Science, King Abdulaziz University, Jeddah 999088;
    d School of Pharmacy, Lanzhou University, Lanzhou 730000

Received date: 2018-06-28

  Revised date: 2018-07-26

  Online published: 2018-08-22

Supported by

Project supported by the Department of Education of Guangdong Province (Nos. 2017KTSCX185, 2017KSYS010, 2016KCXTD005), the Youth Team Fund of Wuyi University, and the National Natural Science Foundation of China (Nos. 21472077, 21772071).

Abstract

The endoplasmic reticulum, a subcellular organelle, plays an important role in the life activities of mammalian cells. Therefore, visualizing the endoplasmic reticulum, and further examining its active substances, microenvironments and physiological processes have important guiding value for the diagnosis and treatment of related diseases. In recent years, the design and synthesis of endoplasmic reticulum-targetable fluorescent probes have received more and more attentions. Currently, reported endoplasmic reticulum-targetable fluorescent probes mainly include simple endoplasmic reticulum imaging, metal ions, small molecule material, big molecule material, microenvironments, etc. This article summarizes and describes the design and synthesis of the reported endoplasmic reticulum-targetable fluorescent probes, analyzes the application of endoplasmic reticulum fluorescent probes in the study of cellular physiological processes, and prospects the development trend of endoplasmic reticulum-targetable fluorescent probes.

Cite this article

Lü Hui, Xu Xuetao, Huang Danying, Wu Panpan, Sheng Zhaojun, Liu Wenfeng, Li Dongli, Alharbi Njud S., Zhang Kun, Wang Shaohua . Recent Progress on Endoplasmic Reticulum-Targetable Fluorescence Probe[J]. Chinese Journal of Organic Chemistry, 2018 , 38(12) : 3165 -3175 . DOI: 10.6023/cjoc201806043

References

[1] Vance, J. E. Traffic 2015, 16, 1.
[2] Sovolyova, N.; Healy, S.; Samali, A.; Logue, S. E. Biol. Chem. 2014, 395, 1.
[3] Zhang, H.; Hu, J. Trends Cell Biol. 2016, 26, 934.
[4] Brodsky, J. L.; Skach, W. R. Curr. Opin. Cell Biol. 2011, 23, 464.
[5] Borgese, N.; Francolini, M.; Snapp, E. Curr. Opin. Cell Biol. 2006, 18, 358.
[6] Westrate, L. M.; Lee, J. E.; Prinz, W. A.; Voeltz, G. K. Annu. Rev. Biochem. 2015, 84, 791.
[7] Li, M.; Fan, J. L.; Li, H. D.; Du, J. J.; Long, S. R.; Peng, X. J. Biomaterials 2018, 164, 98.
[8] Liu, S. Y.; Ge, G. B.; Dong, W. B.; Peng, X. J.; Liu, F. Y.; Chen, S. S.; Sun, S. G. Sens. Actuators, A 2017, 253, 1145.
[9] Li, H. D.; Yao, Q. C.; Fan, J. L.; Du, J. J.; Wang, J. Y.; Peng, X. J. Biosens. Bioelecton. 2017, 94, 536.
[10] Xu, G.; Yan, Q. L.; Lv, X. G.; Zhu, Y.; Xin, K.; Shi, B.; Wang, R. C.; Chen, J.; Gao, W.; Shi, P.; Fan, C. H.; Zhao, C. C.; Tian, H. Angew. Chem., Int. Ed. 2018, 57, 3626.
[11] Han, H. H.; Qiu, Y. J.; Shi, Y. Y.; Wen, W.; He, X. P.; Dong, L. W.; Tan, Y. X.; Long, Y. T.; Tian, H.; Wang, H. Y. Theranostics 2017, 8, 3268.
[12] Zhang, J. J.; Fu, Y. X.; Han, H. H.; Zang, Y.; Li, J.; He, X. P.; Feringa, B. L.; Tian, H. Nat. Commun. 2017, 8, 987.
[13] Wu, H. J.; Jia, J. H.; Xu, Y. F.; Qian, X. H.; Zhu, W. P. Sens. Actuator, B 2018, 265, 59.
[14] Ti, Y. Z.; Yu, L.; Tang, Y. Jin, T. X.; Yang, M.; Wang, R.; Xu, Y. F.; Zhu, W. P. Sens. Actuator, B 2018, 265, 582.
[15] Li, D. D.; Xu, Y. Q.; Zhou, N. N.; Liu, J. X.; Wang, R.; Cheng, T.; Tang, Y.; Zhu, W. P.; Xu, Y. F.; Qian, X. H. Dyes Pigm. 2017, 136, 627.
[16] Li, J.; Chen, Y. H.; Chen, T. T.; Qiang, J.; Zhang, Z. J.; Wei, T. W.; Zhang, W.; Wang, F.; Chen, X. Q. Sens. Actuator, B 2018, 268, 446.
[17] Lee, D.; Jeong, K.; Luo, X.; Kim, G.; Yang, Y. J.; Chen, X. Q.; Kim, S.; Yoon, J. J. Mater. Chem. B 2018, 6, 2541.
[18] Zhang, Z. J.; Wei, T. W.; Chen, Y. H.; Chen, T. T.; Chi, B.; Wang, F.; Chen, X. Q. Sens. Actuator, B 2018, 255, 2211.
[19] Wu, X. F.; Shi, W.; Li, X. H.; Ma, H. M. Angew. Chem., Int. Ed. 2017, 56, 15319.
[20] Xu, Y. H.; Shi, W.; He, X. Y.; Wu, X. F.; Li, X. H.; Ma, H. M. Anal. Chem. 2017, 89, 10980.
[21] Fang, Y.; Chen, W.; Shi, W.; Li, H. Y.; Xian, M.; Ma, H. M. Chem. Commun. 2017, 53, 8759.
[22] Wang, H.; Xue, K.; Li, P.; Yang, Y. Y.; He, Z. X.; Zhang, W.; Zhang, W.; Tang, B. Anal. Chem. 2018, 90, 6020.
[23] Yang, L. M.; Li, J.; Pan, W.; Wang, H. Y.; Li, N.; Tang, B. Chem. Commun. 2018, 54, 3656.
[24] Gao, X. N.; Jiang, L. L.; Hu, B.; Kong, F. P.; Liu, X. J.; Xu, K. H.; Tang, B. Anal. Chem. 2018, 90, 4719.
[25] Jones, V. C.; McKeown, L.; Verkhratsky, A.; Jones, O. T. BMC Neurosci. 2008, 9, 10.
[26] Diniz, J. R.; Correa, J. R.; Moreira, D.; Fontenele, R. S.; Oliveira, A. L.; Abdelnur, P. V.; Dutra, J. D. L.; Freire, R. O.; Rodrigues, M. O.; Neto, B. A. D. Inorg. Chem. 2013, 52, 10199.
[27] Zhang, H; Fan, J. L.; Dong, H. J.; Zhang, S. Z.; Xu, W. Y.; Wang, J. Y.; Gao, P.; Peng, X. J. J. Mater. Chem. B 2013, 1, 5450.
[28] D'Amore, C.; Orso, G.; Fusi, F.; Pagano, M. A.; Miotto, G.; Forgiarini, A.; Martin, S. D.; Castellani, G.; Ribaudo, G.; Rennison, D.; Brimble, M. A.; Hopkins, B.; Ferrarese, A.; Bova, S. Front Pharmacol. 2016, 7, 315.
[29] Collot, M.; Kreder, R.; Tatarets, A. L., Patsenker, L. D.; Mely, Y.; Klymchenko, A. Chem. Commun. 2015, 51, 17136.
[30] Kamkaew, A.; Thavornpradit, S.; Puangsamlee, T.; Xin, D.; Wanichachev, N.; Burgess, K. Org. Biomol. Chem. 2015, 13, 8271.
[31] Phaniraj, S.; Gao, Z.; Rane, D.; Peterson, B. R. Dyes Pigm. 2016, 135, 127.
[32] Zheng, S.; Huang, C.; Zhao, X.; Zhang, Y.; Liu, S.; Zhu, Q. Spectrochem. Acta A 2017, 189, 231.
[33] Meinig, J. M.; Fu, L.; Peterson, B. R. Angew. Chem., Int. Ed. 2015, 54, 9696.
[34] Lew, R. L.; Briskin, D. P.; Wyse, R. E. Plant Physiol. 1986, 82, 47.
[35] Giannini, J. L.; Gildensoph, L. H.; Reynolds-niesman, I.; Briskin, D. P. Plant Physiol. 1987, 85, 1129-1136.
[36] Lee, Y. H.; Park, N.; Park, Y. B.; Hwang, Y. J.; kang, C.; Kim, J. S. Chem. Commun. 2014, 50, 3197.
[37] Park, S. Y.; Kim, W.; Park, S. H.; Han, J. Y.; Lee, J.; Kang, C.; Lee, M. H. Chem. Commun. 2017, 53, 32.
[38] Lin, W.; Buccella, D.; Lippard, S. J. J. Am. Chem. Soc. 2013, 135, 13512.
[39] Gan, X.; Sun, P.; Li, H.; Tian, X.; Zhang, B.; Wu, J.; Tian, Y.; Zhou, H. Biosens. Bioelectron. 2016, 86, 393.
[40] Lee, M. H.; Lee, H.; Chang, M. J.; Kim, H. S.; Kang, C.; Kim, J. S. Dyes Pigm. 2016, 130, 245.
[41] Xiao, H.; Li, P.; Hu, X.; Shi, X.; Zhang, W.; Tang, B. Chem. Sci. 2016, 7, 6153.
[42] Gao, C.; Tian, Y.; Zhang, R. B.; Jing, J.; Zhang, X. Anal. Chem. 2017, 89, 12945.
[43] Xiao, H.; Liu, X.; Wu, C.; Wu, Y.; Li, P.; Guo, X.; Tang, B. Biosens. Bioelectron. 2017, 91, 449.
[44] Li, J. P.; Xia, S.; Zhang, H.; Qu, G. R.; Guo, H. M. Sens Actuator, B 2018, 255, 622.
[45] Liu, P.; Han, X. Y.; Yu, F. B.; Chen, L. X. Chin. J. Anal. Chem. 2015, 43, 1829.
[46] Ali, F.; Sreedharan, S.; Ashoka, A. H.; Saeed, H. K.; Smythe, C. G. W.; Thomas, J. A.; Das, A. Anal. Chem. 2017, 89, 12087.
[47] Tang, Y.; Ma, Y.; Xu, A.; Xu G.; Lin, W. Methods Appl. Fluoresc. 2017, 5, 024005.
[48] Tang, Y.; Xu, A.; Ma, Y.; Xu, G.; Gao, S.; Lin, W. Sci. Rep. 2017, 7, 12944.
[49] Meng, Q.; Jia, H.; Succar, P.; Zhao, L.; Zhang, R.; Duan, C.; Zhang, Z. Biosens. Bioelectron. 2015, 74, 461.
[50] Hakamata, W.; Tamura, S.; Hirano, T.; Nishio, T. ACS Med. Chem. Lett. 2014, 5, 321.
[51] Shaulov-Rotem, Y.; Merquiol, E.; Weiss-Sadan, T.; Moshel, O.; Salpeter, S.; Shabat, D.; Kaschani, F.; Kaiser, M.; Blum, G. Chem. Sci. 2016, 7, 1322.
[52] Xu, S.; Liu, H. W.; Hu, X. X.; Huan, S. Y.; Zhang, Y.; Liu, Y.; Yuan, L.; Qu, F. L.; Zhang, X. B.; Tan, W. Anal. Chem. 2017, 89, 7641.
[53] McMahon, B. K.; Pal, R.; Parker, D. Chem. Commun. 2013, 49, 5363.
[54] Ghule, N. V.; Bhosale, R. S.; Kharat, K.; Puyad, A. L.; Bhosale, S. V.; Bhosale, S. V. ChemPlusChem 2015, 80, 485.
[55] Upendar, R. G.; Anila, H. A.; Firoj, A.; Nandaraj, T.; Samit, C.; Amitava, D. Org. Lett. 2015, 17, 5532.
[56] Arai, S.; Lee, S. C.; Zhai, D.; Suzuki, M.; Chang, Y. T. Sci. Rep. 2014, 4, 6701.
[57] Yang, Z.; He, Y.; Lee, J. H.; Chae, W. S.; Ren, W. X.; Lee, J. H.; Kang, C.; Kim, J. S. Chem. Commun. 2014, 50, 11672.
[58] Lee, H.; Yang, Z.; Wi, Y.; Kim, T. W.; Verwilst, P.; Lee, Y. H.; Han, G.; Kang, C.; Kim, J. S. Bioconjugate Chem. 2015, 26, 2474.
[59] Xiao, H.; Wu, C.; Li, P.; Gao, W.; Zhang, W.; Zhang, W.; Tong, L.; Tang, B. Chem. Sci. 2017, 8, 7025.
[60] Takakura, H.; Zhang, Y.; Erdmann, R. S.; Thompson, A. D.; Lin, Y.; McNellis, B.; Rivera-Molina, F.; Uno, S.; Kamiya, M.; Urano, Y.; Rothman, J. E.; Bewersdorf, J.; Schepartz, A.; Toomre, D. Nat. Biotechnol. 2017, 35, 773.
[61] Kaplfán, P.; RaCay, P.; Lehotský, J.; Mézešová, V. Neurochem. Res. 1995, 20, 815.
[62] Yang, Z.; Wi, Y.; Yoon, Y. M.; Verwilst, P.; Jang, J. H.; Kim, T. H.; Kang, C.; Kim, J. S. Chem. Asian J. 2016, 11, 527.

Outlines

/