Chinese Journal of Organic Chemistry >
One-Pot Synthesis of 2-Benzyl-3,4-dihydro-2H-isoquinolin-1-ones Catalyzed by CuCl2
Received date: 2018-05-10
Revised date: 2018-07-24
Online published: 2018-09-05
An facile, effective, copper-catalyzed one-pot approach to 2-benzyl-3,4-dihydroquinolin-1-ones has been successfully developed. The compounds were achieved by the reaction of tetrahydroisoquinoline, benzyl azide and benzaldehyde in one-pot fashion via nucleophilic addition reaction followed by oxidation. The desired products were afforded in the high yield of 50%~70%. Moreover, The effects of different catalyst, additives, reaction temperature and proportion of substrates on the reaction were also investigated. The results showed that the optimizing conditions of reaction were CuCl2 as catalyst, CH3COOH as additive and toluene as solvent. A series of 2-benzyl-3, 4-dihydro-2H-isoquinolin-1-ones can be efficiently obtained under the optimizing conditions.
Key words: CuCl2; one-pot; 2-benzyl-3,4-dihydro-2H-isoquinolin-1-ones
Fu Chao , Fan Yanxia , Sun Qihui , Yi Weiyin , Yi Fengping . One-Pot Synthesis of 2-Benzyl-3,4-dihydro-2H-isoquinolin-1-ones Catalyzed by CuCl2[J]. Chinese Journal of Organic Chemistry, 2019 , 39(2) : 566 -570 . DOI: 10.6023/cjoc201805024
[1] (a) Siengalewicz, P.; Rinner, U.; Mulzer, J. Chem. Soc. Rev. 2008, 2676.
(b) Campos, K. R.Chem. Soc. Rev. 2007, 36, 1069.
(c) Lebold, T. P.; Wood, J. L.; Deitch, J.; Lodewyk, M. W.; Tantillo, D. J.; Sarpong, R. Nat. Chem. 2013, 5, 126.
(d) Reddy, R. J.; Kawai, N.; Uenishi, J. J. Org. Chem. 2012, 77, 11101.
[2] Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102, 1669.
[3] Chandrasekhar, S.; Mohanty, P. K. Org. Lett. 1999, 1, 877.
[4] Kashiwada, Y.; Aoshima, A.; Ikeshiro, Y. Bioorg. Med. Chem. 2005, 13, 443.
[5] Zheng, M.; Zhang, X.; Zhao, M. Bioorg. Med. Chem. 2008, 16, 9574.
[6] (a) Fisher, M. J.; Gunn, B. P.; Harms, C. S.; Kline, A. D.; Mullaney, J. T. Bioorg. Med. Chem. Lett. 1997, 7, 2537.
(b) Jin, R.; Patureau, F. W. ChemCatChem 2015, 7, 223.
[7] (a) Gonzalez, D.; Martinot, T.; Hudlicky, T. Tetrahedron 1998, 40, 3077.
(b) McNulty, J.; Mao, J.; Gibe, R.; Mo, R.; Wolf, S.; Pettit, G. R.; Herald, D. L.; Boyd, M. R. Bioorg. Med. Chem. Lett. 2011, 11, 169.
(c) Banwell, M. G.; Bissett, B. D.; Busato, S.; Cowden, C. J.; Hockess, D. C. R.; Holman, J. W.; Read, R. W.; Wu, A. W. J. Chem. Soc., Chem. Commun. 1995. 2551.
[8] Chern, M. S.; Li, W. R. Tetrahedron Lett. 2004, 45, 8323.
[9] Mori, M.; Chiba, K.; Ban, Y. J. Org. Chem. 1978, 43, 1684.
[10] (a) So, M. H.; Liu, Y. L.; Ho, C. M.; Che, C. M. Chem. Asian J. 2009, 4, 1551.
(b) Jin, X. J.; Kataoka, K.; Yatabe, T.; Yamaguchi, K.; Mizuno, N. Angew. Chem., Int. Ed. 2016, 55, 7212.
[11] Khusnutdinova, J. R.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. 2014, 136, 2998.
[12] Griffiths, R.; Burly, G. A.; Talbot, E. P. A. Org. Lett. 2017,19, 870.
[13] Sueda, T.; Kajishima, D.; Goto, S. J. Org. Chem. 2003, 58, 3307.
[14] Song, A. R.; Yu, J.; Zhang, C. Synthesis 2012, 44, 2903.
[15] Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Eur. J. Org. Chem. 2010, 1875.
/
〈 |
|
〉 |