Notes

Sc(OTf)3 Catalyzed Oxo-Michael Addition to o-Quinone Methides by Alcohols

  • Zhang Shuo ,
  • Peng Dan ,
  • Zhao Ning ,
  • Yu Yitao ,
  • Wang Feng ,
  • Liu Hailong ,
  • Yi Gang
Expand
  • a Shandong Provincial Key Laboratory for Special Silicone-Containing Materials, Advanced Materials Institute, Qilu University of Technology(Shandong Academy of Sciences), Jinan 250014;
    b Shandong Dongyue Organosilicon Materials Co., Ltd., Zibo 256401

Received date: 2018-07-09

  Revised date: 2018-08-26

  Online published: 2018-09-10

Supported by

Project supported by the Shandong Provincial Natural Science Foundation (No. ZR2017BB033), the Youth Science Funds of Shandong Academy of Sciences (No. 2018QN0030) and the National Natural Science Foundation of China (No. 51503118).

Abstract

o-Quinone derivatives are not only a variety of active and important intermediate, but also widely used in the synthesis of natural products and medicinal chemistry. In the present study, the Sc(OTf)3 catalyzed oxo-Michael addition to o-quinone methides by alcohols was developed. The products were obtained in moderate to good yields (76%~97%) under mild conditions. Furthermore, the reaction could be scaled up to multigram scale.

Cite this article

Zhang Shuo , Peng Dan , Zhao Ning , Yu Yitao , Wang Feng , Liu Hailong , Yi Gang . Sc(OTf)3 Catalyzed Oxo-Michael Addition to o-Quinone Methides by Alcohols[J]. Chinese Journal of Organic Chemistry, 2019 , 39(2) : 555 -560 . DOI: 10.6023/cjoc201807017

References

[1] Pathak, T. P.; Sigman, M. S. J. Org. Chem. 2011, 76, 9210.
[2] Willis, N. J.; Bray, C. D. Chem.-Eur. J. 2012, 18, 9160.
[3] Caruana, L.; Fochi, M.; Bernardi, L. Molecules 2015, 20, 11733.
[4] Wang, Z.; Sun, J. Synthesis 2015, 47, 3629.
[5] Guo, C.; Song, J.; Luo, S.; Gong, L. Z. Angew. Chem., Int. Ed., 2010, 49, 5558.
[6] Van De Water, R, W.; Pettus, T. R. R. Tetrahedron 2002, 58, 5367.
[7] Kulikov, A.; Arumugam, S.; Popik, V. V. J. Org. Chem. 2008, 73, 7611.
[8] Mattson, A. E.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 4508.
[9] Luan, Y.; Schaus, S. E. J. Am. Chem. Soc. 2012, 134, 19965.
[10] Shaikh, A. K.; Cobb, A. J. A.; Varounis, G. Org. Lett. 2012, 14, 584.
[11] Chen, M. W.; Gao, L. L.; Ye, Z. S.; Jiang, G. F.; Zhou, Y. G. Chem. Commun. 2013, 49, 1660.
[12] Yoshida, H.; Watanabe, M.; Fukushima, H.; Ohshita, J.; Kunai, A. A. Org. Lett. 2004, 6, 4049.
[13] Bai, W. J.; David, J. G.; Feng, Z. G.; Weaver, M. G.; Wu, K. L.; Pettus, T. R. R. Acc. Chem. Res. 2014, 47, 3655.
[14] Caruana, L.; Fochi, M.; Bernardi, L. Molecules 2015, 20, 11733.
[15] Wang, Z.; Sun, J. Synthesis 2015, 47, 3629.
[16] Zhao, W.; Wang, Z.; Chu, B.; Sun, J. Angew. Chem., Int. Ed. 2015, 54, 1910.
[17] Huang, Y.; Hayashi, T. J. Am. Chem. Soc. 2015, 137, 7556.
[18] Wang, Z.; Ai, F.; Wang, Z.; Zhao, W.; Zhu, G.; Lin, Z.; Sun, J. J. Am. Chem. Soc. 2015, 137, 383.
[19] Wu, B.; Yu, Z.; Gao, X.; Lan, Y.; Zhou, Y.-G. Angew. Chem., Int. Ed. 2017, 56, 4006.
[20] Chen, P.; Wang, K. l; Guo, W.; Liu, X.; Liu, Y.; Li, C. Angew. Chem., Int. Ed. 2017, 56, 3689.
[21] Nising, C. F.; Brase, S. Chem. Soc. Rev. 2008, 37, 1218.
[22] Nising, C. F.; Brase, S. Chem. Soc. Rev. 2012, 41, 988.
[23] Heravi, M. M.; Hajiabbasi, P. Mol. Diversity 2014, 18, 411.
[24] Gu, Q.; Rong, Z.-Q.; Zheng, C.; You, S. L. J. Am. Chem. Soc. 2010, 132, 4056.
[25] Rubush, D. M.; Morges, M. A.; Rose, B. J.; Thamm, D. H.; Rovis, T. J. Am. Chem. Soc. 2012, 134, 13554.
[26] Shi, Y. L.; Shi, M. Org. Biomol. Chem. 2007, 5, 1499.
[27] Liang, M.; Zhang, S.; Jia, J.; Tung, C.-H.; Wang, J. W.; Xu, Z. H. Org. Lett. 2017, 19, 2526.
[28] Lai, Z. W.; Wang, Z. B.; Sun, J. W. Org. Lett. 2015, 17, 6058.

Outlines

/