Chinese Journal of Organic Chemistry >
Pd/1,3-Bis(diphenylphosphino)propane Catalyzed Arylation of Benzoxazoles at C-2 Position with Aryl Bromides
Received date: 2018-07-27
Revised date: 2018-09-05
Online published: 2018-09-10
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21572137, 21871187), the Key Program of Sichuan Science and Technology Project (No. 2018GZ0312).
A catalyst system combined of PdCl2 with 1,3-bis(diphenylphosphion)propane (dppp), which was simple and from commercially available materials, was reported for the highly efficient arylation of benzoxazoles at C-2 position with aryl bromides. This catalytic system could tolerate a great number of functional groups in benzoxazole and bromobenzene. With a low PdCl2 loading of 0.01 mol%, aryl bromides could be completely converted into the desired products for 24 h. If the loading of catalyst was up to 0.10 mol%, most of substrates could give more than 90% yields in 6 h. The exploration of the reaction mechanism discovered that Pd nanoparticles were formed during this reaction. The morphology and composition analysis of the Pd nanoparticles with transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) indicated that dppp played a key role to block the aggregation of palladium particles. In addition, the ring-opening pathway of benzoxazoles in the reaction process was proved by control experiments. Hot filtration experimental and high resolution mass spectrum (HRMS) analysis of filtrate suggested that the real active species were Pd(0)-Pd(Ⅱ)/dppp complexes.
Key words: arylation; benzoxazole; 1,3-bis(diphenylphosphion)propane; palladium
Wang Yangdiandian , Yu Xiaojun , Fu Haiyan , Zheng Xueli , Chen Hua , Li Ruixiang . Pd/1,3-Bis(diphenylphosphino)propane Catalyzed Arylation of Benzoxazoles at C-2 Position with Aryl Bromides[J]. Chinese Journal of Organic Chemistry, 2019 , 39(2) : 482 -490 . DOI: 10.6023/cjoc201807050
[1] (a) Seth, K.; Garg, S. K.; Kumar, R.; Purohit, P.; Meena, V. S.; Goyal, R.; Banerjee, U. C.; Chakraborti, A. K. ACS Med. Chem. Lett. 2014, 5, 512.
(b) Noel, S.; Cadet, S.; Gras, E.; Hureau, C. Chem. Soc. Rev. 2013, 42, 7747.
[2] He, J.; Lin, F.; Yang, X. F.; Wang, D.; Tan, X. H.; Zhang, S. J. Org. Process Res. Dev. 2016, 20, 1093.
[3] Zhang, Z.; Zhao, D.; Dai, Y.; Cheng, M. S.; Geng, M. Y.; Shen, J. K.; Ma, Y. C.; Ai, J.; Xiong, B. Molecules 2016, 21, 1407.
[4] Abdellaoui, F.; Youssef, C.; Ammar, H. B.; Roisnel, T.; Soulé, J. F.; Doucet, H. ACS Catal. 2016, 6, 4248.
[5] Kosugi, M.; Koshiba, M.; Atoh, A.; Sano, H.; Migita, T. B. Chem. Soc. Jpn. 1986, 59, 677.
[6] Derridja, F.; Djebbar, S.; Benali-Baitich, O.; Doucet, H. J. Organomet. Chem. 2008, 693, 135.
[7] Gao, F.; Kim, B. S.; Walsh, P. J. Chem. Commun. 2014, 50, 10661.
[8] (a) Yan, X. M.; Mao, X. R.; Huang, Z. Z. Heterocycles 2011, 83, 1371.
(b) Alagille, D.; Baldwin, R. M.; Tamagnan, G. D. Tetrahedron 2005, 46, 1349.
(c) Wang, M.; Li, D.; Zhou, W.; Wang, L. Tetrahedron 2012, 68, 1926.
[9] Huang, J. k.; Chan, J.; Chen, Y.; Borths, C. J.; Baucom, K. D.; Larsen, R. D.; Faul, M. M. J. Am. Chem. Soc. 2010, 132, 3674.
[10] Li, S.; Wan, P. H.; Ai, J.; Sheng, R.; Hu, Y. Z.; Hu, Y. H. Adv. Synth. Catal. 2017, 359, 772.
[11] Seth, K.; Purohit, P.; Chakraborti, A. K. Org. Lett. 2014, 16, 2334.
[12] (a) Arslan, H.; Özdem?r, ?.; Vanderveer, D.; Dem?r, S.; Çet?nkaya, B. J. Coord. Chem. 2009, 62, 2591.
(b) Yang, L. G.; Yuan, J. W.; Mao, P.; Guo, Q. RSC Adv. 2015, 5, 107601.
[13] (a) Lewis, J. C.; Wu, J. Y.; Bergman, R. G.; Ellman, J. A. Angew. Chem., Int. Ed. 2006, 45, 1589.
(b) Strotman, N. A.; Chobanian, H. R.; Guo, Y.; He, J. F.; Wilson, J. E. Org. Lett. 2010, 12, 3578.
[14] (a) Zhao, D. B.; Wang, W. D.; Lian, S.; Yang, F.; Lan, J. B.; You, J. S. Chem.-Eur. J. 2009, 15, 1337.
(b) Wang, X.; Gribkov, D. V.; Sames, D. J. Org. Chem. 2007, 72, 1476.
(c) Le, H. T. N.; Nguyen, T. T.; Vu, P. H. L.; Truong, T.; Phan, N. T. S. J. Mol. Catal. A:Chem. 2014, 391, 74.
[15] (a) Jiang, Z. J.; Wang, W.; Zhou, R.; Zhang, L.; Fu, H. Y.; Zheng, X. L.; Chen, H.; Li, R. X. Catal. Commun. 2014, 57, 14.
(b) Zhou, R.; Wang, W.; Jiang, Z. J.; Fu, H. Y.; Zheng, X. L.; Zhang, C. C.; Chen, H.; Li, R. X. Catal. Sci. Technol. 2014, 4, 746.
(c) Zhou, R.; Wang, W.; Jiang, Z. J.; Wang, K.; Fu, H. Y.; Zheng, X. L.; Chen, H.; Li, R. X. Chem. Commun. 2014, 50, 6023.
[16] Yu, P.; Zhang, G. Y.; Chen, F.; Cheng, J. Tetrahedron Lett. 2012, 53, 4588.
[17] Huang, J. K.; Chan, J.; Chen, Y.; Borths, C. J.; Baucom, K. D.; Larsen, R. D.; Faul, M. M. J. Am. Chem. Soc. 2010, 132, 3674.
[18] Simmons, E. M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51, 3066.
[19] (a) Kim, Y.; Kim, H.; Kim, J. D. RSC Adv. 2018, 8, 2441.
(b) Ho, C. E.; Hsieh, W. Z.; Lee, P. T.; Huang; Y. H.; Kuo, T. T. Appl. Surf. Sci. 2018, 434, 1353.
[20] Zhang, Y.; Zhao, Y.; Luo, Y.; Xiao, L.Q.; Huang, Y. X.; Li, X. R.; Peng, Q. T.; Liu, Y. Z.;Yang, B.; Zhu, C. Z.; Zhou, X. C.; Zhang, J. M. Org. Lett. 2017, 19, 6470.
[21] Sánchez, R. S.; Zhuravlev, F. A. J. Am. Chem. Soc. 2007, 129, 5824.
[22] (a) Jutzi, P.; Gilge, U. J. Organomet. Chem. 1983, 246, 159.
(b) Kernbach, U.; Lugger, T.; Hahn, F. E.; Fehlhammer, W. P. J. Organomet. Chem. 1997, 541, 51.
[23] Patra, A.; James, A.; Das, T. K.; Biju, A. T. J. Org. Chem. 2018, 83, 14820.
[24] Yin, Y. Z.; Yue, X. Y.; Zhong, Q.; Jiang, H.; Bai, R. P.; Lan, Y.; Zhang, H. Adv. Synth. Catal. 2018, 360, 1639.
[25] Ueda, S.; Nagasawa, H. Angew. Chem., Int. Ed. 2008, 47, 6411.
[26] Chang, W. C.; Sun, Y. K.; Huang, Y. Heteroat. Chem. 2017, 28, e21360.
[27] Yuan, X. l.; Liu, Y. F.; Qin, M. D.; Yang, X. Y., Chen, B. H. ChemistrySelect 2018, 3, 5541.
[28] Ackermann, L.; Althammer, A.; Fenner, S. Angew. Chem., Int. Ed. 2009, 48, 201.
[29] Naeimi, H.; Rahmatinejad, S. Synth. React. Inorg. Met.-Org. Chem. 2016, 46, 471.
[30] Ghodbane,A.; D'Altério, S.; Saffon, N.; McClenaghan, N. D.; Scarpantonio, L.; Jolinat, P.; Fery-Forgues; S. Langmuir 2012, 28, 855.
[31] Hachiya, H.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2009, 11, 1737.
[32] Shibahara, F.; Yamaguchi, E.; Murai, T. Chem. Commun. 2010, 46, 2471.
[33] Li, Y. Q.; Yu, X. J.; Wang, Y. D. D.; Fu, H. Y.; Zheng, X. L.; Chen, H.; Li, R. X. Organometallics 2018, 37, 979.
[34] Eastman, K. C. US 3458506, 1967[Chem. Abstr. 1969, 71, 125998d].
[35] Singh, V.; Singh, A.; Singh, G.; Verma, R. K.; Mall, R. Med. Chem. Res. 2018, 27, 735.
[36] Jung, M. R.; Choi, S. W.; Cho, K. W. J. Heterocycl. Chem. 2000, 37, 969.
[37] Evindar, G.; Batey, R. A. J. Org. Chem. 2006, 71, 1802.
[38] Dai, W. C.; Wang, Z. X. Org. Chem. Front. 2017, 4, 1281.
/
〈 |
|
〉 |