Chinese Journal of Organic Chemistry >
Stereoselective Synthesis of Z-Fluorostyrene Derivatives via Nickel-Catalyzed Cross-Coupling of gem-Difluorostyrenes with Organozinc Reagents
Received date: 2018-07-06
Revised date: 2018-09-05
Online published: 2018-09-18
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21472043, 21272070).
An efficient method for the synthesis of various Z-fluorostyrene derivatives via nickel-catalyzed cross-coupling of gem-difluorostyrenes with organozinc reagents with the assistance of LiCl was developed. The reaction proceeds efficiently under mild condition, affording monofluoroalkenes in moderate to good yields. This novel method exhibits good functional group compatibility and excellent stereoselectivity.
Zhang Juan , Wang Biyun , Liu Yisen , Cao Song . Stereoselective Synthesis of Z-Fluorostyrene Derivatives via Nickel-Catalyzed Cross-Coupling of gem-Difluorostyrenes with Organozinc Reagents[J]. Chinese Journal of Organic Chemistry, 2019 , 39(1) : 249 -256 . DOI: 10.6023/cjoc201807013
[1] (a) Landelle, G.; Bergeron, M.; Turcotte-Savard, M.-O.; Paquin, J.-F. Chem. Soc. Rev. 2011, 40, 2867.
(b) Malo-Forest, B.; Landelle, G.; Roy, J.-A.; Lacroix, J.; Gaudreault, R. C.; Paquin, J.-F. Bioorg. Med. Chem. Lett. 2013, 23, 1712.
(c) Zhao, Y.-C.; Jiang, F.-Z. Hu, J.-B. J. Am. Chem. Soc. 2015, 137, 5199.
(d) Eddarir, S.; Abdelhadi, Z.; Rolando, C. Tetrahedron Lett. 2001, 42, 9127.
(e) Liao, F.-M.; Yu, J.-S.; Zhou, J. Chin. J. Org. Chem. 2017, 37, 2175(in Chinese). (廖富民, 余金生, 周剑, 有机化学, 2017, 37, 2175.)
(f) Chen, X.-W.; Gan, X.-H.; Chen, J.-X.; Chen, Y.-Z.; Wang, Y.-J.; Hu, D.-Y.; Song, B.-A. Chin. J. Org. Chem. 2017, 37, 2343(in Chinese). (陈学文, 甘秀海, 陈吉祥, 陈永中, 王艳娇, 胡德禹, 宋宝安, 有机化学, 2017, 37, 2343.)
[2] (a) Laue, K. W.; Mück-Lichtenfeld, C.; Haufe, G. Tetrahedron 1999, 55, 10413.
(b) Guérin, D.; Dez, I.; Gaumont, A. C.; Pannecoucke, X.; Couve-Bonnaire, S. Org. Lett. 2016, 18, 3606.
[3] (a) Udagawa, T.; Kogawa, M.; Tsuchi, Y.; Watanabe, H.; Yamamoto, M.; Kawatsura, M. Tetrahedron Lett. 2017, 58, 227.
(b) Augustine, J. K.; Boodappa, C.; Venkatachaliah, S. Org. Biomol. Chem. 2014, 12, 2280.
(c) Kogawa M.; Watanabe, H.; Yamamoto, M.; Tsuchi, Y.; Zhou, B.; Kawatsura, M. Synlett 2017, 28, 1071.
(d) Liu, Y.-L.; Zhou, J. Acta Chim. Sinica 2012, 70, 1451(in Chinese). (刘运林, 周剑, 化学学报, 2012, 70, 1451.)
(e) Liu, Y.; Deng, M.-M.; Zhang, Z.-Y.; Ding, X.-H.; Dai, Z.-Q.; Guan, J.-T. Chin. J. Org. Chem. 2012, 32, 661(in Chinese). (刘运, 邓萌萌, 张智勇, 丁肖华, 戴志群, 关金涛, 有机化学, 2012, 32, 661.)
[4] (a) Drouin, M.; Hamel, J.-D.; Paquin J.-F. Synthesis 2018, 50, 881.
(b) Koh, M. J.; Nguyen, T. T.; Zhang, H.; Schrock, R. R.; Hoveyda, A. H. Nature 2016, 531, 459.
[5] (a) Hara, S. Top. Curr. Chem. 2012, 327, 59.
(b) Zhang, X.-X.; Cao, S. Tetrahedron Lett. 2017, 58, 375.
[6] (a) Hu, J.-F.; Han, X.-W.; Yuan, Y.; Shi, Z.-Z. Angew. Chem., Int. Ed. 2017, 56, 13342.
(b) Kong, L.-H.; Zhou, X.-K.; Li, X.-W. Org. Lett. 2016, 18, 6320.
[7] Cai, S.-H.; Ye, L.; Wang, D.-X.; Wang, Y.-Q.; Lai, L.-J.; Zhu, C.; Feng, C.; Loh, T.-P. Chem. Commun. 2017, 53, 8731.
[8] Kojima, R.; Kubota, K.; Ito, H. Chem. Commun. 2017, 53, 10688.
[9] Kong, L-H.; Liu, B.-X.; Zhou, X.-K.; Wang, F.; Li, X.-W. Chem. Commun. 2017, 53, 10326.
[10] Lu, X.; Wang, Y.; Zhang, B.; Pi, J.-J.; Wang, X.-X.; Gong, T.-J.; Xiao, B.; Fu, Y. J. Am. Chem. Soc. 2017, 139, 12632.
[11] (a) Negishi, E.-I. Angew. Chem., Int. Ed. 2011, 50, 6738.[b] Wang, K.; Kong, W. Q. Chin. J. Chem. 2018, 36, 247.[c] Zhang, P.-C.; Wang Y. D.; Qian, D. Y.; Li, W. B.; Zhang, J. L. Chin. J. Chem. 2017, 35, 849.
[12] Gerber, R.; Frech, C. M. Chem. Eur. J. 2011, 17, 11893.
[13] Yang, Y.; Oldenhuis, N. J.; Buchwald, S. L. Angew. Chem., Int. Ed. 2013, 52, 615.
[14] (a) Sun, A. D.; Leung, K.; Restivo, A. D.; LaBerge, N. A.; Takasaki, H.; Love, J. A. Chem.-Eur. J. 2014, 20, 3162.
(b) Zhu, F.; Wang, Z.-X. J. Org. Chem. 2014, 79, 4285.
(c) Xiao, S.-H.; Xiong, Y.; Zhang, X.-X.; Cao, S. Tetrahedron 2014, 70, 4405.
[15] Saeki, T.; Takashima, Y.; Tamao, K. Synlett 2005, 1771.
[16] Ohashi, M.;Kambara, T.; Hatanaka, T.; Saijo, H.; Doi, R.; Ogoshi, S. J. Am. Chem. Soc. 2011, 133, 3256.
[17] Ohashi, M.; Kamura, R.; Doi, R.; Ogoshi, S. Chem. Lett. 2013, 42, 933.
[18] (a) Xiong, Y.; Huang, T.; Ji, X.-F.; Wu, J.-J., Cao, S. Org. Biomol. Chem. 2015, 13, 7389.
(b) Zhang, J.; Xu, C.-Y.; Wu, W.; Cao, S. Chem. Eur. J. 2016, 22, 9902.
(c) Zhang, J.; Dai, W.-P.; Liu, Q.-Y.; Cao, S. Org. Lett. 2017, 19, 3283.
[19] (a) Dai, W.-P.; Xiao, J.; Jin, G.-Y.; Wu, J.-J.; Cao, S. J. Org. Chem. 2014, 79, 10537.
(b) Dai, W.-P.; Shi, H.-Y.; Zhao, X.-H.; Cao, S. Org. Lett. 2016, 18, 4284.
[20] (a) Zeng, X.-Z.; Qian, M.-X.; Hu, Q.; Negishi, E.-I. Angew. Chem., Int. Ed. 2004, 43, 2259.
(b) Tan, Z.; Negishi, E.-I. Angew. Chem., Int. Ed. 2006, 45, 762.
[21] Qiu, J.; Gyorokos, A.; Tarasow, T. M.; Guiles, J. J. Org. Chem. 2008, 73, 9775.
[22] Ohashi, M.; Saijo, H.; Shibata, M.; Ogoshi, S. Eur. J. Org. Chem. 2013, 443.
[23] (a) Thornbury, R. T.; Toste, F. D. Angew. Chem., Int. Ed. 2016, 55, 11629.
(b) Ichikawa, J.; Sakoda, K.; Mihara, J.; Ito, N. J. Fluorine Chem. 2006, 127, 489.
[24] Shi, H.-Y.; Dai, W.-P.; Wang, B.-Y.; Cao, S. Organometallics 2018, 37, 459.
[25] Thomoson, C. S.; Martinez, H.; Dolbier Jr, W. R. J. Fluorine Chem. 2013, 150, 53.
[26] Ji, Y.; Zhong, N.; Kang, Z.-N.; Yan, G.-B.; Zhao, M. Synlett 2018, 29, 209.
[27] Shao, Q.; Huang, Y. Chem. Commun. 2015, 51, 6584.
[28] Wenz, J.; Rettenmeier, C. A.; Wadepohl, H.; Gade, L. H. Chem. Commun. 2016, 52, 202.
[29] Eric, R.; Mouâd, A.; Gérard, C. J. Organomet. Chem. 2001, 624, 376.
[30] Loefflerx, L. J.; Delorefice, S. B. J. Pharm. Sci. 1975, 64, 1170.
[31] Kim, S. P.; Yang, J. Y.; Kang, M. Y.; Park, J. C.; Nam, S. H.; Friedman, M. J. Agric. Food Chem. 2011, 59, 4570.
/
〈 |
|
〉 |