ARTICLE

Synthesis of Host Material Containing Indolocarbazole Group Featuring Bipolar and Thermally Activated Delayed Fluorecence and Its Application

  • Ye Zhonghua ,
  • Yang Jiali ,
  • Ling Zhitian ,
  • Zhao Yi ,
  • Chen Guo ,
  • Zheng Yanqiong ,
  • Wei Bin ,
  • Shi Ying
Expand
  • a School of Materials Science and Engineering, Shanghai University, Shanghai 200072;
    b Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072

Received date: 2018-07-03

  Revised date: 2018-09-03

  Online published: 2018-09-26

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 51725505 and 61775130), the National Key Basic Research and Development Program of China (973 program, No. 2015CB655005) and the Science and Technology Committee of Shanghai City (No. 15590500500).

Abstract

The novel host material containing indolocarbazole group, 10-phenyl-10-(4-(7-phenylindolo[2,3-b]carbazol-5(7H)-yl)phenyl)anthracen-9(10H)-one (DphAn-5PhIdCz), was designed and synthesized. The structures were characterized by NMR and their photophysical properties such as ultraviolet-visible absorption wavelength, fluorescence emission wavelength, fluorescence quantum yield, and transient fluorescence lifetime were measured. The DphAn-5PhIdCz was found to exhibit the characteritics of bipolar and thermally activated delayed fluorescence. By using this material as host of green emitter, (ppy)2 Iracac, high-efficiency and low roll-off phosphorescent organic light-emitting diode (PhOLED) was fabricated with the maximum current efficiency of 56.12 cd·A-1, the maximum external quantum efficiency of 15.70% and the maximum power efficiency of 71.3 lm·W-1. These make DphAn-5PhIdCz a promising host for high performance PhOLED displays and lighting applications.

Cite this article

Ye Zhonghua , Yang Jiali , Ling Zhitian , Zhao Yi , Chen Guo , Zheng Yanqiong , Wei Bin , Shi Ying . Synthesis of Host Material Containing Indolocarbazole Group Featuring Bipolar and Thermally Activated Delayed Fluorecence and Its Application[J]. Chinese Journal of Organic Chemistry, 2019 , 39(2) : 449 -455 . DOI: 10.6023/cjoc201807006

References

[1] Wang, Z. B.; Helander, M. G.; Qiu, J.; Puzzo, D. P.; Greiner, M. T.; Hudson, Z. M.; Wang, S.; Liu, Z. W.; Lu, Z. H. Nat. Photon. 2011, 5, 753.
[2] Chen, M.; Zhang, L.; Lin, H.; Li, Q.; Yu, J. S. J. Optoelec-tron·Laser 2012, 23, 1063(in Chinese). (陈珉, 张磊, 林慧, 李青, 于军胜, 光电子·激光, 2012, 23, 1063.)
[3] Ding, L.; Zhang, F. H.; Li, Y. F.; Liang, T. J.; Zhang, J. J. Optoelectron·Laser 2011, 22, 1615(in Chinese). (丁磊, 张方辉, 李艳飞, 梁田静, 张静, 光电子·激光, 2011, 22, 1615.)
[4] Nakayama, T.; Hiyama, K.; Furukawa, K.; Ohtani, H. Sid Symp. Dig. Tech. Pap. 2007, 38, 1018.
[5] Zhou, T. X.; Tan, N.; Brown, J. J.; Shtein, M..; Forrest, S. R. Appl. Phys. Lett. 2005, 86, 3033.
[6] Wang, Q.; Oswald, I. W. H.; Yang, X. L.; Zhou, G. J.; Jia, H. P.; Qiao, Q. Q.; Hoshikawa-Halbert, J.; Gnade, B. E. Adv. Electron. Mater. 2015, 1, 322.
[7] Yu, D. H.; Zhao, F. C.; Han, C. M.; Xu, H.; Li, J.; Zhang, Z.; Deng, Z. P.; Ma, D. G.; Yan, P. F. Adv. Mater. 2012, 24, 509.
[8] Kim, S. H.; Jang, J.; Yook, K. S.; Lee, J. Y. Appl. Phys. Lett. 2008, 92, 023513.
[9] Han, C. H.; Zhu, L. P.; Li, J.; Zhao, F. C.; Zhang, Z.; Xu, H.; Deng, Z. P.; Ma, D. G.; Yan, P. F. Adv. Mater. 2014, 26, 7070.
[10] Park, Y. S.; Lee, S.; Kim, K. H.; Kim, S. Y.; Lee, J. H.; Kim, J. J. Adv. Funct. Mater. 2013, 23, 4914.
[11] Shin, H.; Lee, S.; Kim, K. H.; Moon, C. K.; Yoo, S. J.; Lee, J. H.; Kim, J. J. Adv. Mater. 2014, 26, 4730.
[12] Lee, J. H.; Cheng, S. H.; Yoo, S. J.; Shin, H.; Chang, J. H.; Wu, C. I.; Wong, K. T.; Kim, J. J. Adv. Funct. Mater. 2015, 25, 361.
[13] Tao, Y. T.; Wang, Q.; Yang, C. L.; Wang, Q.; Zhang, Z. Q.; Zou, T. T.; Qin, J. G.; Ma, D. G. Angew. Chem. 2008, 120, 8224.
[14] Feng, Y. S.; Ping Li, P.; Zhuang, X. M.; Ye, K. Q.; Peng, T.; Liu, Y.; Wang, Y. Chem. Commun. 2015, 51, 12544.
[15] Kang, J. S.; Hong, T. R.; Kim, H. J.; Son, Y. H.; Lampande, R.; Kang, B. Y.; Lee, C.; Bin, J. K.; Lee, B. S.; Yang, J. H.; Kim, J.; Park, S.; Cho, M. J.; Kwon, J. H.; Choi, D. H. J. Mater. Chem. 2016, 4, 4512.
[16] Lin, C. C.; Huang, M. J.; Chiu, M. J.; Huang, M. P.; Chang, C. C.; Liao, C. Y.; Chiang, K. M.; Shiau, Y. J.; Chou, T. Y.; Chu, L. K.; Lin, H. W.; Cheng, C. H. Chem. Mater. 2017, 29, 1527.
[17] Liu, Y. Y.; Liang, F.; Yuan, Y.; Cui, L. S.; Jiang, Z. Q.; Liao, L. S. Chem. Commun. 2016, 52, 8149.
[18] Wang, H.; Meng, L. Q.; Shen, X. X.; Wei, X. F.; Zheng, X. L.; Lv, X. P.; Yi, Y. P.; Wang, Y.; Wang, P. F. Adv. Mater. 2015, 27, 4041.
[19] Guo, K. P.; Wang, H. D.; Wang, Z. X.; Si, C. F.; Peng, C. Y.; Wei, B. Chem. Sci. 2017, 8, 1259.
[20] Zhang, H. H.; Wu, H. Imag. Sci. Photochem. 2015, 33, 183(in Chinese). (张慧慧, 吴昊, 影像科学与光化学, 2015, 33, 183.)
[21] Gao, Z. L.; Liu, Y. R.; Shi, Y.; Wang, Y. X.; Xu, Y.; Xu, Q. CN 106008264, 2017.
[22] Wu, Y.; Li, Y. N.; Gardner, S.; Ong, B. S. J. Am. Chem. Soc. 2004, 127, 614.
[23] Li, Y. N.; Wu, Y. L.; Gardner, S.; Ong, B. S. Adv. Mater. 2005, 17, 849.
[24] Endo, A.; Sato, K.; Yoshimura, K.; Kai, T.; Kawada, A.; Miyazaki, H.; Adachi, C. Appl. Phys. Lett. 2011, 98, 42.
[25] Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.
[26] Tsai, M. H.; Hong, Y. H.; Chang, C. H.; Su, H. C.; Wu, C. C.; Mato-liukstyte, A.; Simokaitiene, J.; Grigalevicius, S.; Grazulevicius, J. V.; Hsu, C. P. Adv. Mater. 2007, 19, 862.
[27] Zhang, D. D.; Cai, M. H.; Zhang, Y.G.; Zhang, D. Q.; Duan, L. Mater. Horiz. 2016, 3, 145.
[28] Zeng, Q.; Li, Z.; Dong, Y. Q.; Di, C. A.; Qin, J. G.; Tang, B. Z. Chem. Commun. 2007, (1), 70.
[29] Guo, K. P.; Zhang, J. H.; Xu, T.; Gao, X. C.; Wei, B. J. Disp. Technol. 2014, 10, 642.

Outlines

/