ARTICLE

Synthesis of Chiral Imidazole Amino Alcohols and Their Application in the Asymmetric Copper-Catalyzed Henry Reaction

  • Mao Pu ,
  • Yang Liangru ,
  • Xiao Yongmei ,
  • Yuan Jinwei ,
  • Mai Wenpeng ,
  • Gao Jie ,
  • Zhang Xinchi
Expand
  • a Academician Workstation for Natural Medicinal Chemistry of Henan Province, School of Chemical Engineering and Environment, Henan University of Technology, Zhengzhou 450001;
    b School of Material and Chemical Engineering, Henan University of Engineering, Zhengzhou 451191

Received date: 2018-07-04

  Revised date: 2018-08-31

  Online published: 2018-09-26

Supported by

Project supported by the National Natural Science Foundation of China (No. 21172055), the Natural Science Foundation of Henan Province Department of Education (No. 18A150004), the Program for Innovative Research Team from Zhengzhou City (No. 131PCXTD605), and the Fundamental Research Funds for the Henan Provincial Colleges and Universities in Henan University of Technology (No. 2017RCJH08).

Abstract

Using L-phenylalaninol as chiral precursor, a series of multi-aryl substituted imidazole amino alcohol derivatives containing appended chiral functionalities were synthesized through a "four component-one pot procedure" from the condensation reaction of L-phenylalaninol, dibenzoyl (benzil), ammonium acetate and different heterocyclic aryl-aldehyde. X-ray crystal analysis confirmed that the chiral carbon retained the S configuration of L-phenylalaninol. The chiral ligands in combination with Cu(OAc)2·H2O catalyzed the enantioselective Henry reaction of nitromethane and aromatic aldehydes with moderate to high yields and excellent enantioselectivities (>99%) with S configuration. The easy availability of catalyst components, mild reaction conditions and high enantioselectivity make the system attractive for practical application.

Cite this article

Mao Pu , Yang Liangru , Xiao Yongmei , Yuan Jinwei , Mai Wenpeng , Gao Jie , Zhang Xinchi . Synthesis of Chiral Imidazole Amino Alcohols and Their Application in the Asymmetric Copper-Catalyzed Henry Reaction[J]. Chinese Journal of Organic Chemistry, 2019 , 39(2) : 443 -448 . DOI: 10.6023/cjoc201807008

References

[1] Rosini, G. In Comprehensive Organic Synthesis, Vol. 2, Eds.:Trost, B. M., Fleming, I., Pergamon, Oxford, UK, 1999, p. 321.
[2] Pinnick, H. W. In Organic Reactions, Vol. 38, Ed.:Paquette, L. A., Wiley, New York, 1990, Chapter 3.
[3] Palomo, C.; Oiarbide, M.; Laso, A. Eur. J. Org. Chem. 2007, 2561.
[4] Ono, N. The Nitro Group in Organic Synthesis, Wiley-VCH, New York, 2001.
[5] Shibasaki, M.; Gröger, H. In Comprehensive Asymmetric Catalysis, Vol. Ⅲ, Eds.:Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H.; Springer, Berlin, Germany, 1999, p. 1075.
[6] Shibasaki, M.; Gröger, H.; Kanai, M. In Comprehensive Asymmetric Catalysis, Eds.:Supplement, I.; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Springer, Heidelberg, Germany, 2004, p. 131.
[7] Luzzio, F. A. Tetrahedron 2001, 57, 915.
[8] Bandini, M.; Piccinelli, F.; Tommasi, S.; Ronchi, A. U.; Ventrici, C. Chem. Commun. 2007, 616.
[9] Blay, G.; Hernández-Olmos, V.; Pedro, J. R. Synlett 2011, 1195.
[10] Palomo, C.; Oiarbide, M.; Mielgo, A. Angew. Chem., Int. Ed. 2004, 43, 5442.
[11] Zhang, S.; Li, Y.; Xu, Y.; Wang, Z. Chin. Chem. Lett. 2018, 29, 873.
[12] Bhatt, A. P.; Pathak, K.; Jasra, R. V.; Kureshy, R. I.; Khan, N. H.; Abdi, S. H. R. J. Mol. Catal. A:Chem. 2006, 244, 110.
[13] Trost, B. M.; Yeh, V. S. C. Angew. Chem., Int. Ed. 2002, 41, 861.
[14] Palomo, C.; Oiarbide, M.; Laso, A. Angew. Chem., Int. Ed. 2005, 44, 3881.
[15] Liu, S. L.; Wolf, C. Org. Lett. 2008, 10, 1831.
[16] Bulut, A.; Aslan, A.; Dogan, Ö. J. Org. Chem. 2008, 73, 7373.
[17] Park, J.; Lang, K.; Abboud, K. A.; Hong, S. J. Am. Chem. Soc. 2008, 130, 16484.
[18] Kogami, Y.; Nakajima, T.; Ikeno, T.; Yamada, T. Synthesis 2004, 1947.
[19] Kowalczyk, R.; Kwiatkowski, P.; Skarzewski, J.; Jurczak, J. J. Org. Chem. 2009, 74, 753.
[20] Zulauf, A.; Mellah, M.; Schulz, E. J. Org. Chem. 2009, 74, 2242.
[21] Choudary, B. M.; Ranganath, K. V. S.; Pal, U.; Kantam, M. L.; Sreedhar, B. J. Am. Chem. Soc. 2005, 127, 13167.
[22] Sasai, H.; Suzuki, T.; Arai, S.; Arai, T.; Shibasaki, M. J. Am. Chem. Soc. 1992, 114, 4418.
[23] Christensen, C.; Juhl, K.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem. 2002, 67, 4875.
[24] Xiong, Y.; Wang, F.; Huang, X.; Wen, Y.; Feng, X. Chem.-Eur. J. 2007, 13, 829.
[25] Bandini, M.; Piccinelli, F.; Tommasi, S.; Umani-Ronchi, A.; Ventrici, C. Chem. Commun. 2007, 616.
[26] Arai, T.; Takashita, R.; Endo, Y.; Watanabe, M.; Yanagisawa, A. J. Org. Chem. 2008, 73, 4903.
[27] Ma, K.; You, J. Chem.-Eur. J. 2007, 13, 1863.
[28] Dixit, A.; Kumar, P.; Yadav, G. D.; Singh, S. Inorg. Chim. Acta 2018, 479, 240.
[29] Khlebnikova, T. B.; Konev, V. N.; Pai, Z. P. Tetrahedron 2018, 74, 260.
[30] Christensen, C.; Juhl, K.; Jørgensen, K. A. Chem. Commun. 2001, 2222.
[31] Evans, D. A.; Seidel, D.; Rueping, M.; Lam, H. W.; Shaw, J. T.; Downey, C. W. J. Am. Chem. Soc. 2003, 125, 12692.
[32] McManus, H. A.; Guiry, P. J. Chem. Rev. 2004, 104, 4151.
[33] Desimoni, G.; Faita, G.; Jørgensen, K. A. Chem. Rev. 2006, 106, 3561.
[34] Hargaden, G. C.; Guiry, P. J. Chem. Rev. 2009, 109, 2505.
[35] Aydin, A. E.; Yuksekdanaci, S. Tetrahedron:Asymmetry 2013, 24, 14.
[36] Wolinska, E. Tetrahedron:Asymmetry 2014, 25, 1122.
[37] Cruz, H.; Aguirre, G.; Madrigal, D. Chavez, D.; Somanathan, R. Tetrahedron:Asymmetry 2016, 27, 1217.
[38] Liu, S.; Wolf, C. Org. Lett. 2008, 10, 1831.
[39] Spangler, K. Y.; Wolf, C. Org. Lett. 2009, 11, 4724.
[40] Toussaint, A.; Pfaltz, A. Eur. J. Org. Chem. 2008, 14, 459.
[41] Kowalczyk, R.; Sidorowicz, L.; Skarzewski, J. Tetrahedron:Asymmetry 2008, 19, 2310.
[42] Selvakumar, S.; Sivasankaran, D.; Singh, V. K. Org. Biomol. Chem. 2009, 7, 3156.
[43] Chunhong, Z.; Liu, F.; Gou, S. Tetrahedron:Asymmetry 2014, 25, 278.
[44] Cwiek, R.; Nideziejko, P.; Kaluza, Z. J. Org. Chem. 2014, 79, 1222.
[45] El-Asaad, B.; Metay, E.; Karame, I.; Lemaire, M. Mol. Catal. 2017, 435, 76.
[46] Jin, W.; Li, X.; Huang, Y.; Wu, F.; Wan, B. Chem.-Eur. J. 2010, 16, 8259.
[47] Otevrel, J.; Bobal, P. J. Org. Chem. 2017, 82, 8342.
[48] Wu, L.; Su, Y.; Chong, S.; Zhang, W.; Huang, D.; Wang, K.; Hu, Y. Chin. J. Org. Chem. 2017, 37, 936(in Chinese). (吴丽丽, 苏瀛鹏, 种思颖, 张为钢, 黄丹风, 王克虎, 胡雨来, 有机化学, 2017, 37, 936.)
[49] Blay, G.; Climent, E.; Fernández, I.; Hernández-Olmos, V.; Pedro, J. R. Tetrahedron:Asymmetry 2007, 18, 1603.
[50] Blay, G.; Hernández-Olmos, V.; Pedro, J. R. Chem. Commun. 2008, 4840.
[51] Arai, T.; Suzuki, K. Synlett 2009, 3167.
[52] Sappino, C.; Mari, A.; Mantineo, A.; Moliterno, M.; Palagri, M.; Tatangelo, C.; Suber, L.; Bovicelli, P.; Ricelli, A.; Righi, G. Org. Biomol. Chem. 2018, 16, 1860.
[53] Vicario, J.; Badia, D.; Carrillo, L.; Reyes E.; Etxebarria, J. Curr. Org. Chem. 2005, 9, 219.
[54] Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835.
[55] Guo, J.; Mao, J. Chirality 2009, 21, 619.
[56] Xu, F.; Lei, C.; Yan, L.; Tu, J.; Li, G. Chirality 2015, 27, 761.
[57] Lu, G.; Zheng, F.; Wang, L.; Guo, Y.; Li, X.; Cao, X.; Wang, C.; Chi, H.; Dong, Y.; Zhang, Z. Tetrahedron:Asymmetry 2016, 27, 732.
[58] Chen, W.; Zhou, Z., Chen, H. Org. Biomol. Chem. 2017, 15, 1530.
[59] Bao, W.; Wang, Z.; Li, Y. J. Org. Chem. 2003, 68, 591.
[60] Mao, P.; Cai, Y.; Xiao, Y.; Yang, L.; Xue, Y.; Song, M. Phosphorus, Sulfur Silicon Relat. Elem. 2010, 185, 2418.
[61] Matsuoka, Y.; Ishida, Y.; Sasaki, D.; Saigo, K. Tetrahedron 2006, 62, 8199.
[62] Xiao, Y.; Yang, L.; He, K.; Yuan, J.; Mao, P. Acta Crystallogr. 2012, E68, o264.
[63] Yang, L.; Xiao, Y.; He, K.; Yuan, J.; Mao, P. Acta Crystallogr. 2012, E68, o1670.
[64] Kodama, K.; Sugawara, K.; Hirose, T. Chem.-Eur. J. 2011, 17, 13584.

Outlines

/