Chinese Journal of Organic Chemistry >
Recent Advances on Transition-Metal-Catalyzed Allenamides Cyclization
Received date: 2018-07-17
Revised date: 2018-09-06
Online published: 2018-09-26
With the especial reactivity, selectivity, availability and stability, the allenamides have got more and more attention, and the reports on allenamides cyclization grow rapidly. This review gives an up-to-date overview of transition-metal-catalyzed allenamides cyclization, which are sorted by metal catalysts in eight categories of Pd, Ru, Rh, Au, Co, Ag, Pt and Ni. For most of these transformations, the plausible mechanisms are demonstrated in details. Clarification of these issues is the key point for understanding the transition-metal-catalyzed allenamides cyclization and developing new high performance methodologies for chemists.
Geng Dianguo . Recent Advances on Transition-Metal-Catalyzed Allenamides Cyclization[J]. Chinese Journal of Organic Chemistry, 2019 , 39(2) : 301 -317 . DOI: 10.6023/cjoc201807028
[1] (a) Colacot, T. New Trends in Cross Coupling:Theory and Applications, RSC, Cambridge, UK, 2015.
(b) Meijere, A.; Oestreich, M. Metal-Catalyzed Cross-Coupling Reactions and More, Wiley-VCH, Weinheim, Germany, 2014.
(c) Hao, E.; Jiang, X.; Fu, D.; Wang, D.; Xie, M.; Qu, G.; Guo, H. Chin. J. Org. Chem. 2016, 36, 2746(in Chinese). (郝二军, 蒋小涵, 付丹丹, 王东超, 谢明胜, 渠桂荣, 郭海明, 有机化学, 2016, 36, 2746.)
(d) Liu, C.; Liu, G.; Zhao, H. Chin. J. Chem. 2016, 34, 1048.
(e) Dong, X.; Hou, Y.; Meng, F.; Liu, H.; Liu, H. Chin. J. Org. Chem. 2017, 37, 1088(in Chinese). (董旭, 侯永正, 孟凡威, 刘洪波, 刘会, 有机化学, 2017, 37, 1088.)
(f) Tang, H. M.; Huo, X. H.; Meng, Q. H.; Zhang, W. B. Acta Chim. Sinica 2016, 74, 219(in Chinese). (汤淏溟, 霍小红, 孟庆华, 张万斌, 化学学报, 2016, 74, 219.)
[2] Grigg, R. Sridharan, V. Xu, L.-H. J. Chem. Soc., Chem. Commun. 1995, 1903.
[3] Grigg, R.; Köppen, I.; Rasparini, M.; Sridharan, V. Chem. Commun. 2001, 96.
[4] Grigg, R.; McCaffrey, S.; Sridharan, V.; Fishwick, C. W. G.; Kilner, C.; Korn, S.; Bailey, K.; Blacker, J. Tetrahedron 2006, 62, 12159.
[5] Inamoto, K.; Yamamoto, A.; Ohsawa, K.; Hiroya, K.; Sakamoto, T. Chem. Pharm. Bull. 2005, 53, 1502.
[6] Husinec, S.; Petkovic, M.; Savic, V.; Simic, M. Synthesis 2012, 44, 399.
[7] Xie, Z.; Wu, P.; Cai, L.; Tong, X. Tetrahedron Lett. 2014, 55, 2160.
[8] Yan, F.; Liang, H,; Song, J.; Cui, J.; Liu, Q.; Liu, S.; Wang, P.; Dong, Y.; Liu, H. Org. Lett. 2017, 19, 86.
[9] Beccalli, E. M.; Bernasconi, A.; Borsini, E.; Broggini, G.; Rigamonti, M.; Zecchi, G. J. Org. Chem. 2010, 75, 6923
[10] Grigg, R.; Loganathan, V.; Sridharan, V.; Stevenson, P.; Sukirthalingam, S.; Worakun, T. Tetrahedron 1996, 52, 11479.
[11] Gardiner, M.; Grigg, R.; Sridharan, V.; Vicker, N. Tetrahedron Lett. 1998, 39, 435.
[12] Fuwa, H.; Sasaki, M. Org. Biomol. Chem. 2007, 5, 2214.
[13] Grigg, R.; Sansano, J. M. Tetrahedron 1996, 52, 13441.
[14] Parthasarathy, K.; Jeganmohan, M.; Cheng, C. Org. Lett. 2006, 8, 621.
[15] Cao, J.; Kong, Y.; Deng, Y.; Lai, G.; Cui, Y.; Hu, Z.; Wang, G. Org. Biomol. Chem. 2012, 10, 9556.
[16] Grigg, R.; Sansano, J. M.; Santhakumar, V.; Sridharan, V.; Thangavelanthum, R.; Thornton-Pett, M.; Wilson, D. Tetrahedron 1997, 53, 11803.
[17] Fuwa, H.; Sasaki, M. Org. Biomol. Chem. 2007, 5, 2214.
[18] Liang, H.; Yan, F.; Dong, X.; Liu, Q.; Wei, X.; Liu, S.; Dong, Y.; Liu, H. Chem. Commun. 2017, 53, 3138.
[19] Zhu, S.; Cao, J.; Wu, L.; Huang, X. J. Org. Chem. 2012, 77, 1049.
[20] (a) Zhu, C.; Yang, B.; Jiang, T.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 2015, 54, 9066.
(b) Qiu, Y.; Yang, B.; Zhu, C.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 2016, 128, 6630.
[21] Persson, A. K. Å.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 2010, 49, 4624.
[22] (a) Arisawa, M.; Terada, Y.; Takahashi, K.; Nakagawa, M.; Nishida, A. J. Org. Chem. 2006, 71, 4255.
(b) Donohoe, T. J.; O'Riordan, T. J. C.; Rosa, C. P. Angew. Chem., Int. Ed. 2009, 48, 1014.
[23] Poeylaut-Palena, A. A.; Testero, S. A.; Mata, E. G. Chem. Com-mun. 2011, 47, 1565.
[24] Edlin, C. D.; Faulkner, J.; Quayle, P. Tetrahedron Lett. 2006, 47, 1145.
[25] Bokka, A.; Hua, Y.; Berlin, A. S.; Jeon, J. ACS Catal. 2015, 5, 3189.
[26] (a) Kim, B. G.; Snapper, M. L. J. Am. Chem. Soc. 2006, 128, 52.
(b) Peppers, B. P.; Diver, S. T. J. Am. Chem. Soc. 2004, 126, 9524.
[27] Zeng, X.; Wei, Z.; Farina, V.; Napolitano, E.; Xu, Y.; Zhang, L.; Haddad, N.; Yee, N. K.; Grinberg, N.; Shen, S.; Senanayake, C. H. J. Org. Chem. 2006, 71, 8864.
[28] Dornan, P. K.; Wickens, Z. K.; Grubbs, R. H. Angew. Chem., Int. Ed. 2015, 54, 7134.
[29] Gavenonis, J.; Arroyo, R. V.; Snapper, M. L. Chem. Commun. 2010, 46, 5692.
[30] (a) Rosillo, M.; Casarrubios, L.; Domínguez, G.; Pérez-Castells, J. Tetrahedron Lett. 2001, 42, 7029.
(b) Rosillo, M.; Domínguez, G.; Casarrubios, L.; Amador, U.; Pérez-Castells, J. J. Org. Chem. 2004, 69, 2084.
[31] (a) López, F.; Delgado, A.; Rodríguez, J. R.; Castedo, L.; Mascareñas, J. L. J. Am. Chem. Soc. 2004, 126, 10262.
(b) Arisawa, M.; Fujii, Y.; Kato, H.; Fukuda, H.; Matsumoto, T.; Ito, M.; Abe, H.; Ito, Y.; Shuto, S. Angew. Chem., Int. Ed. 2013, 52, 1003.
[32] Desroy, N.; Robert-Peillard, F.; Toueg, J.; Hénaut, C.; Duboc, R.; Rager, M.-N.; Savignac, M.; Gênet, J.-P. Synthesis 2004, 2665.
[33] Kinderman, S. S.; Van Maarseveen, J. H.; Schoemaker, H. E.; Hiemstra, H.; Rutjes, F. P. T. Org. Lett. 2001, 3, 2045.
[34] Nada, T.; Yoneshige, Y.; Ii, Y.; Matsumoto, T.; Fujioka, H.; Shuto, S.; Arisawa, M. ACS Catal. 2016, 6, 3168.
[35] Barluenga, J.; Vicente, R.; López, L. A.; Tomás. M. J. Am. Chem. Soc. 2006, 128, 7050.
[36] Brummond, K. M.; Yan, B. Synlett 2008, 2303.
[37] Lindsay, V. N. G.; Fiset, D.; Gritsch, P. J.; Azzi, S.; Charette, A. B. J. Am. Chem. Soc. 2013, 135, 1463.
[38] Zheng, W.; Bora, P. P.; Sun, G.; Kang. Q. Org. Lett. 2016, 18, 3694.
[39] Lin, T.; Zhu, C.; Zhang, P.; Wang, Y.; Wu, H.; Feng, J.; Zhang, J. Angew. Chem., Int. Ed. 2016, 55, 10844.
[40] Hyland, C. J. T.; Hegedus, L. S. J. Org. Chem. 2006, 71, 8658.
[41] Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2007, 9, 4821.
[42] González-Gómez, A.; Domínguez, G.; Pérez-Castells, J. Eur. J. Org. Chem. 2009, 5057.
[43] Ma, Z.; He, S.; Song, W.; Hsung, R. P. Org. Lett. 2012, 14, 5736.
[44] Li, X.; Zhu, L.; Zhou, W.; Chen. Z. Org. Lett. 2012, 14, 436.
[45] Faustino, H.; Bernal, P.; Castedo, L.; López, F.; Mascareñas, J. L. Adv. Synth. Catal. 2012, 354, 1658.
[46] Suarez-Pantiga, S.; Hernández-Díaz, C.; Piedrafita, M.; Rubio, E.; Gonzáleza, J. M. Adv Synth. Catal. 2012, 354, 1651.
[47] Ocello, R.; Nisi, A. D.; Jia, M.; Yang, Q.; Monari, M.; Giacinto, P.; Bottoni, A.; Miscione, G. P.; Bandini. M. Chem. Eur. J. 2015, 21, 18445.
[48] Li, G.; Zhou, E.; Li, X.; Bi, Q.; Wang, Z.; Zhao, Z.; Hu, W.; Chen, Z. Chem. Commun. 2013, 49, 4770.
[49] Wang, Y.; Zhang, P.; Qian, D.; Zhang, J. Angew. Chem., Int. Ed. 2015, 54, 14849.
[50] Singh, R. R.; Pawar, S. K.; Huang, M.; Liu, R. Chem. Commun. 2016, 52, 11434.
[51] Faustino, H.; López, F.; Castedo, L.; Mascareñas, J. L. Chem. Sci. 2011, 2, 633.
[52] Francos, J.; Grande-Carmona, F.; Faustino, H.; Iglesias-Sigüenza, J.; Díez, E.; Alonso, I.; Fernández, R.; Lassaletta, J. M.; López, F.; Mascareñas, J. L. J. Am. Chem. Soc. 2012, 134, 14322.
[53] Pirovano, V.; Decataldo, L.; Rossi, E.; Vicente, R. Chem. Commun. 2013, 49, 3594.
[54] Faustino, H.; Alonso, I.; Mascareñas, J. L.; López, F. Angew. Chem., Int. Ed. 2013, 52, 6526.
[55] Faustino, H.; Varela, I.; Mascareñas, J. L.; López, F. Chem. Sci. 2015, 6, 2903.
[56] Varela, I.; Faustino, H.; Díez, E.; Iglesias-Sigüenza, J.; Grande-Carmona, F.; Fernandez, R.; Lassaletta, J. M.; Mascareñas, J. L.; López. F. ACS Catal. 2017, 7, 2397.
[57] Peng, S.; Cao, S.; Sun, J. Org. Lett. 2017, 19, 524.
[58] Anorbe, L.; Poblador, A.; Domínguez, G.; Pérez-Castells, J. Tetrahedron Lett. 2004, 45, 4441.
[59] Hu, Y.; Yi, R.; Wu, F.; Wan, B. J. Org. Chem. 2013, 78, 7714.
[60] Brioche, J.; Meyer, C.; Cossy, J. Org. Lett. 2013, 15, 1626.
[61] Chakrabarty, I.; Inamdar, S. M.; Akram, M. O.; Gade, A. B.; Banerjee, S.; Berac, S.; Patil, N. T. Chem. Commun. 2017, 53, 196.
[62] Liu, R.; Hu, J.; Hong, J.; Lu, C.; Gao, J.; Jia, Y. Chem. Sci. 2017, 8, 2811.
/
〈 |
|
〉 |