Chinese Journal of Organic Chemistry >
Radical-Triggered Tandem Reaction of Vinyl Azides with Isopropylxanthic Disulfide for the Synthesis of 6-Sulfanylmethyl Phenanthridines
Received date: 2018-07-16
Revised date: 2018-09-10
Online published: 2018-10-12
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21772176, 21372201), the Opening Foundation of Zhejiang Key Course of Chemical Engineering and Technology, Zhejiang University of Technology.
An 2,2'-azobis(2-methylpropionitrile) (AIBN) initiated tandem reaction of vinyl azides with isopropylxanthic disulfide to construct C-S/C-N bonds was disclosed. A range of functionalized 6-sulfanylmethyl phenanthridines could be easily accessed in 50%~84% yields with a good regioselectivity. The mechanism study indicates a free radical pathway in this reaction.
Key words: vinyl azides; isopropylxanthic disulfide; phenanthridine; radical reaction
Lu Lulu , Zhou Bingwei , Jin Hongwei , Liu Yunkui . Radical-Triggered Tandem Reaction of Vinyl Azides with Isopropylxanthic Disulfide for the Synthesis of 6-Sulfanylmethyl Phenanthridines[J]. Chinese Journal of Organic Chemistry, 2019 , 39(2) : 515 -520 . DOI: 10.6023/cjoc201807025
[1] (a) Keene, B. R. T.; Tissington, P. Adv. Heterocycl. Chem. 1971, 13, 315.
(b) Bernardo, P. H.; Wan, K. F.; Sivaraman, T.; Xu, J.; Moore, F. K.; Hung, A. W.; Mok, H. Y. K.; Yu, V. C.; Chai, C. L. L. J. Med. Chem. 2008, 51, 6699.
(c) Zhang, L.; Ang, G. Y.; Chiba, S. Org. Lett. 2010, 12, 3682.
[2] (a) Cappelli, A.; Anzini, M.; Vomero, S.; Mannuni, L.; Makovec, F.; Doucet, E.; Hamon, M.; Bruni, G.; Romeo, M. R.; Menziani, M. C.; Benedetti, P. G.; Langer, T. J. Med. Chem. 1998, 41, 728.
(b) Lynch, M. A.; Duval, O.; Sukhanova, A.; Devy, J.; MacKay, S. P.; Waigh, R. D.; Nabiev, I. Bioorg. Med. Chem. Lett. 2001, 11, 2643.
(c) Lewis, W. G.; Green, L. G.; Grynszpan, F.; Radic, Z.; Carlier, P. R.; Taylor, P.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 1053.
(d) Cappoen, D.; Claes, P.; Jacobs, J.; Anthonissen, R.; Mathys, V.; Verschaeve, L.; Huygen, K.; Kimpe, N. D. J. Med. Chem. 2014, 57, 2895.
(e) Naidua, K. M.; Nagesha, H. N.; Singhb, M.; Sriramc, D.; Yogeeswaric, P.; Sekhara, K. V. G. C. Eur. J. Med. Chem. 2015, 92, 415.
(f) Riddell, I. A.; Johnstone, T. C.; Park, G. Y.; Lippard, S. J. Chem.-Eur. J. 2016, 22, 7574.
[3] (a) Alonso, R.; Campos, P. J.; García, B.; Rodríguez, M. A. Org. Lett. 2006, 8, 3521.
(b) Portela-Cubillo, F.; Lymer, J.; Scanlan, E. M.; Scott, J. S.; Walton, J. C. Tetrahedron 2008, 64, 11908.
(c) McBurney, R. T.; Slawin, A. M. Z.; Smart, L. A.; Yu, Y.; Walton, J. C. Chem. Commun. 2011, 47, 7974.
(d) McBurney, R. T.; Walton, J. C. J. Am. Chem. Soc. 2013, 135, 7349.
(e) McBurney, R. T.; Walton, J. C. Beilstein J. Org. Chem. 2013, 9, 1083.
(f) Jiang, H.; An, X.; Tong, K.; Zheng, T.; Zhang, Y.; Yu, S. Angew. Chem., Int. Ed. 2015, 54, 4055.
(g) Hofstra, J. L.; Grassbaugh, B. R.; Tran, Q. M.; Armada, N. R.; de Lijser, H. J. P. J. Org. Chem. 2015, 80, 256.
(h) Liu, X.; Qing, Z.; Cheng, P.; Zheng, X.; Zeng, J.; Xie, H. Molecules 2016, 21, 1690.
(i) Tang, J.; Sivaguru, P.; Ning, Y.; Zanoni, G.; Bi, X. Org. Lett. 2017, 19, 4026.
[4] (a) Nanni, D.; Pareschi, P.; Rizzoli, C.; Sgarabotto, P.; Tundo, A. Tetrahedron 1995, 51, 9045.
(b) Tobisu, M.; Koh, K.; Furukawa, T.; Chatani, N. Angew. Chem., Int. Ed. 2012, 51, 11363.
(c) Zhang, B.; Mück-Lichtenfeld, C.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2013, 52, 10972.
(d) Leifert, D.; Daniliuc, C. G.; Studer, A. Org. Lett. 2013, 15, 6286.
(e) Sha, W.; Yu, J.-T.; Jiang, Y.; Yang, H.; Cheng, J. Chem. Commun. 2014, 50, 9179.
(f) Fang, H.; Zhao, J.; Qian, P.; Han, J.; Pan, Y. Asian J. Org. Chem. 2014, 3, 1266.
(g) Xiao, T.; Li, L.; Lin, G.; Wang, Q.; Zhang, P.; Mao, Z.-W.; Zhou, L. Green Chem. 2014, 16, 2418.
(h) Fang, H.; Zhao, J. C.; Qian, P.; Han, J. L.; Pan, Y. Asian J. Org. Chem. 2014, 12, 1266.
(i) Zhang, Z.; Tang, X.; Dolbier, W. R., Jr. Org. Lett. 2015, 17, 4401.
(j) Lu, S.; Gong, Y.; Zhou, D. J. Org. Chem. 2015, 80, 9336.
(k) Zhang, H.; Shi, D.; Ren, S.; Jin, H.; Liu, Y. Eur. J. Org. Chem. 2016, 4224.
(l) Wu, C.; Zhou, Y.; Dong, X.; Qu, J. ARKIOC 2016, 110.
(m) Yang, Z.; Song, X.; Wei, Z.; Cao, J.; Liang, D.; Duan, H.; Lin, Y. Tetrahedron Lett. 2016, 57, 2410.
(n) Singh, M.; Yadav, A. K.; Yadav, L. D. S.; Singh, R. K. P. Synlett 2018, 29, 176.
[5] (a) Wang, Y.-F.; Lonca, G. H.; Runigo, M. L.; Chiba, S. Org. Lett. 2014, 16, 4272.
(b) Yang, J.-C.; Zhang, J.-J.; Guo, L.-N. Org. Biomol. Chem. 2016, 14, 9806.
(c) Sun, X.; Yu, S. Chem. Commun. 2016, 52, 10898.
(d) Mackay, E. G.; Studer, A. Chem. Eur. J. 2016, 22, 13455.
(e) Mao, L.-L.; Zheng, D.-G.; Zhu, X.-H.; Zhou, A.-X.; Yang, S.-D. Org. Chem. Front. 2018, 5, 232.
(f) Li, Y.; Zhu, Y.; Yang, S.-D. Org. Chem. Front. 2018, 5, 822.
(g) Yang, J.-C.; Zhang, J.-Y.; Zhang, J.-J.; Duan, X.-H.; Guo, L.-N. J. Org. Chem. 2018, 83, 1598.
[6] (a) Casellato, U.; Vidali, M.; Vigato, P. A. Coord. Chem. Rev. 1979, 28, 231.
(b) Nief, F. Coord. Chem. Rev. 1998, 178.
(c) Arda, M.; Ozturk, I. I.; Banti, C. N.; Kourkoumelis, N.; Manoli, M.; Tasiopoulos, A. J.; Hadjikakou, S. K. RSC Adv. 2016, 6, 29026.
(d) Ephritikhine, M. Coor. Chem. Rev. 2016, 319, 35.
(e) Boreen, M. A.; Parker, B. F.; Hohloch, S.; Skeel, B. A.; Arnold, J. Dalton Trans. 2018, 47, 96.
[7] (a) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111, 1596.
(b) Doroszuk, J.; Musiejuk, M.; Demkowicz, S.; Rachon, J.; Witt, D. RSC Adv. 2016, 6, 105449.
(c) Jiao, J.; Wei, L.; Ji, X.-M.; Hu, M.-L.; Tang, R.-Y. Adv. Synth. Catal. 2016, 358, 268.
(d) Dong, Z.-B.; Liu, X.; Bolm, C. Org. Lett. 2017, 19, 5916.
(e) Cao, Q.; Peng, H.-Y.; Cheng, Y.; Dong, Z.-B. Synthesis 2018, 50, 1527.
[8] (a) Fuchigami, T.; Chen, C.-S.; Nonaka, T.; Yen, M.-Y.; Tien, H.-J. Bull. Chem. Soc. Jpn. 1986, 59, 487.
(b) Gueyrard, D.; Tatibouët, A.; Gareau, Y.; Rollin, P. Org. Lett. 1999, 1, 521.
(c) Enders, D.; Rembiak, A.; Liebich, J. X. Synthesis 2011, 281.
(d) Camerel, F.; Jeannin, O.; Yzambart, G.; Fabre, B.; Lorcy, D.; Fourmigué, M. New J. Chem. 2013, 37, 992.
(e) Zhang, L.; Zhu, J.; Ma, J.; Wu, L.; Zhang, W.-H. Org. Lett. 2017, 19, 6308.
[9] (a) Tan, J.; Guo, Y.; Zeng, F.; Chen, G.; Xie, L.; He, W. Chin. J. Org. Chem. 2018, 38, 1740.
(b) Wu, C.; Lu, L.-H.; Peng, A.-Z.; Jia, G.-K.; Peng, C.; Cao, Z.; Tang, Z.; He, W.-M.; Xu, X. Green Chem. 2018, 20, 3683.
[10] (a) Sibbald, P. A.; Michael, F. E. Org. Lett. 2009, 11, 1147.
(b) Albéniz, A.C.; Espinet, P.; López-Fernández, R.; Sen, A. J. Am. Chem. Soc. 2002, 124, 11278.
[11] Winterie, J. S.; Mill, T. J. Am. Chem. Soc. 1980, 102, 6336.
[12] Gareau, Y.; Beauchemin, A. Heterocycles 1998, 48, 2003.
[13] Curran, D. P.; Keller, A. J. Am. Chem. Soc. 2006, 128, 13706.
[14] Liu, K.-J.; Jiang, S.; Lu, L.-H.; Tang, L.-L.; Tang, S.-S.; Tang, H.-S.; Tang, Z.; He, W.-M.; Xu, X. Green Chem. 2018, 20, 3038.
/
〈 |
|
〉 |