Articles

Visible-Light Promoted Preparation of Trifluoromethylated Tetrahydrofuran and Tetrahydropyran

  • Wang Na ,
  • Gu Qiang-Shuai ,
  • Cheng Yong-Feng ,
  • Li Lei ,
  • Li Zhong-Liang ,
  • Guo Zhen ,
  • Liu Xin-Yuan
Expand
  • a Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055;
    b Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, College of Materials Science & Engineering, Taiyuan University of Technology, Shanxi 030024;
    c SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055

Received date: 2018-08-31

  Revised date: 2018-09-26

  Online published: 2018-10-20

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21722203, 21831002, 21801116, and 21572096), the Shenzhen Special Funds for the Development of Biomedicine, Internet, New Energy, and New Material Industries (Nos. JCYJ20170412152435366, JCYJ20170307105638498), the Natural Science Foundation of Guangdong Province (No. 2018A030310083) and the Shenzhen Nobel Prize Scientists Laboratory Project (No. C17213101).

Abstract

An efficient protocol for facile access to trifluoromethylated tetrahydrofuran and tetrahydropyran has been developed under visible light irradiation conditions via radical 1,2-alkoxyl-trifluoromethylation of unactivated alkene. It features the use of readily commercially available and operatively simple trifluoromethanesulfonyl chloride as a trifluoro- methyl radical source, thus making the protocol potentially appealing for practical preparation.

Cite this article

Wang Na , Gu Qiang-Shuai , Cheng Yong-Feng , Li Lei , Li Zhong-Liang , Guo Zhen , Liu Xin-Yuan . Visible-Light Promoted Preparation of Trifluoromethylated Tetrahydrofuran and Tetrahydropyran[J]. Chinese Journal of Organic Chemistry, 2019 , 39(1) : 200 -206 . DOI: 10.6023/cjoc201808048

References

[1] (a) Guéret, S. M.; Brimble, M. A. Nat. Prod. Rep. 2010, 27, 1350.
(b) Lorente, A.; Lamariano-Merketegi, J.; Albericio, F.; Álvarez, M. Chem. Rev. 2013, 113, 4567.
(c) Xu, Y.; Wang, W.; Yang, J.; Li, X.; Meng, Q. Chin. J. Org. Chem. 2016, 36, 724(in Chinese). (徐阳荣, 王文智, 杨静静, 李新利, 孟庆国, 有机化学, 2016, 36, 724.)
[2] (a) Boivin, T. L. B. Tetrahedron 1987, 43, 3309.
(b) Nasir, N. M.; Ermanis, K.; Clarke, P. A. Org. Biomol. Chem. 2014, 12, 3323.
(c) Tikad, A.; Delbrouck, J. A.; Vincent, S. P. Chem.-Eur. J. 2016, 22, 9456.
[3] (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(b) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315.
(c) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
(d) Meanwell, N. A. J. Med. Chem. 2018, 61, 5822.
[4] (a) Jeschke, P. ChemBioChem 2004, 5, 570.
(b) Jeschke, P. Pest Manage. Sci. 2010, 66, 10.
(c) Fujiwara, T.; O'Hagan, D. J. Fluorine Chem. 2014, 167, 16.
[5] Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Blackwell Publishing Ltd, West Sussex, 2009.
[6] (a) McClinton, M. A.; McClinton, D. A. Tetrahedron 1992, 48, 6555.
(b) Dolbier, W. R. Chem. Rev. 1996, 96, 1557.
(c) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.
(d) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455.
(e) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
(f) Prakash, G. K. S.; Wang, F. In Organic Chemistry-Breakthroughs and Perspectives, Eds.:Ding, K.; Dai, L.-X., Wiley-VCH, Weinheim, 2012.
(g) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
(h) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513.
(i) Alonso, C.; Martínez de Marigorta, E.; Rubiales, G.; Palacios, F. Chem. Rev. 2015, 115, 1847.
(j) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650.
(k) Huang, L.; Zheng, S.-C.; Tan, B.; Liu, X.-Y. Chem.-Eur. J. 2015, 21, 6718.
(l) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731.
(m) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Chem. Rev. 2015, 115, 826.
(n) Groult, H.; Leroux, F. R.; Tressaud, A. Modern Synthesis Processes and Reactivity of Fluorinated Compounds, Elsevier Inc., 2017.
(o) Hui, R.; Zhang, S.; Tan, Z.; Wu, X.; Feng, B. Chin. J. Org. Chem. 2017, 37, 3060(in Chinese). (惠人杰, 张士伟, 谭政, 吴小培, 冯柏年, 有机化学, 2011, 37, 3060.)
(p) Song, H.-X.; Han, Q.-Y.; Zhao, C.-L.; Zhang, C.-P. Green Chem. 2018, 20, 1662.
[7] (a) Magueur, G.; Crousse, B.; Charneau, S.; Grellier, P.; Bégué, J.-P.; Bonnet-Delpon, D. J. Med. Chem. 2004, 47, 2694.
(b) Frezza, M.; Balestrino, D.; Soulère, L.; Reverchon, S.; Queneau, Y.; Forestier, C.; Doutheau, A. Eur. J. Org. Chem. 2006, 2006, 4731.
(c) Chen, J.-L.; You, Z.-W.; Qing, F.-L. J. Fluorine Chem. 2013, 155, 143.
(d) Kim, S.; Kim, E.; Lee, W.; Hong, J. H. Nucleosides Nucleotides Nucleic Acids 2014, 33, 747.
(e) Kollatos, N.; Manta, S.; Dimopoulou, A.; Parmenopoulou, V.; Triantakonstanti, V. V.; Kellici, T.; Mavromoustakos, T.; Schols, D.; Komiotis, D. Carbohydr. Res. 2015, 407, 170.
(f) Shibata, H.; Tsuchikawa, H.; Hayashi, T.; Matsumori, N.; Murata, M.; Usui, T. Chem.-Asian J. 2015, 10, 915.
(g) Achmatowicz, M. M.; Allen, J. G.; Bio, M. M.; Bartberger, M. D.; Borths, C. J.; Colyer, J. T.; Crockett, R. D.; Hwang, T.-L.; Koek, J. N.; Osgood, S. A.; Roberts, S. W.; Swietlow, A.; Thiel, O. R.; Caille, S. J. Org. Chem. 2016, 81, 4736.
[8] (a) Yang, B.; Xu, X.-H.; Qing, F.-L. Chin. J. Chem. 2016, 34, 465.
(b) Li, T.; Yu, P.; Lin, J.-S.; Zhi, Y.; Liu, X.-Y. Chin. J. Chem. 2016, 34, 490.
[9] (a) Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2012, 134, 12462.
(b) Beniazza, R.; Molton, F.; Duboc, C.; Tron, A.; McClenaghan, N. D.; Lastécouères, D.; Vincent, J.-M. Chem. Commun. 2015, 51, 9571.
(c) Wang, Y.; Jiang, M.; Liu, J.-T. Adv. Synth. Catal. 2016, 358, 1322.
(d) Cheng, Y.-F.; Dong, X.-Y.; Gu, Q.-S.; Yu, Z.-L.; Liu, X.-Y. Angew. Chem., Int. Ed. 2017, 56, 8883.
[10] Noto, N.; Koike, T.; Akita, M. J. Org. Chem. 2016, 81, 7064.
[11] (a) Foulard, G.; Brigaud, T.; Portella, C. J. Fluorine Chem. 1998, 91, 179.
(b) Lin, R.; Sun, H.; Yang, C.; Shen, W.; Xia, W. Chem. Commun. 2015, 51, 399.
(c) Ryzhakov, D.; Jarret, M.; Guillot, R.; Kouklovsky, C.; Vincent, G. Org. Lett. 2017, 19, 6336.
[12] (a) Heaton, C. A.; Powell, R. L. J. Fluorine Chem. 1989, 45, 86.
(b) Kamigata, N.; Fukushima, T.; Yoshida, M. J. Chem. Soc., Chem. Commun. 1989, 1559.
(c) Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224.
(d) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765.
(e) Chachignon, H.; Guyon, H.; Cahard, D. Beilstein J. Org. Chem. 2017, 13, 2800.
[13] (a) Yu, P.; Lin, J.-S.; Li, L.; Zheng, S.-C.; Xiong, Y.-P.; Zhao, L.-J.; Tan, B.; Liu, X.-Y. Angew. Chem., Int. Ed. 2014, 53, 11890.
(b) Yu, P.; Zheng, S.-C.; Yang, N.-Y.; Tan, B.; Liu, X.-Y. Angew. Chem., Int. Ed. 2015, 54, 4041.
(c) Lin, J.-S.; Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-Y. J. Am. Chem. Soc. 2016, 138, 9357.
(d) Li, L.; Li, Z.-L.; Wang, F.-L.; Guo, Z.; Cheng, Y.-F.; Wang, N.; Dong, X.-W.; Fang, C.; Liu, J.; Hou, C.; Tan, B.; Liu, X.-Y. Nat. Commun. 2016, 7, 13852.
(e) Li, L.; Li, Z.-L.; Gu, Q.-S.; Wang, N.; Liu, X.-Y. Sci. Adv. 2017, 3, e1701487.
(f) Lin, J.-S.; Wang, F.-L.; Dong, X.-Y.; He, W.-W.; Yuan, Y.; Chen, S.; Liu, X.-Y. Nat. Commun. 2017, 8, 14841.
(g) Li, X.-T.; Gu, Q.-S.; Dong, X.-Y.; Meng, X.; Liu, X.-Y. Angew. Chem., Int. Ed. 2018, 57, 7668.
[14] (a) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527.
(b) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
(c) Teplý, F. Collect. Czech. Chem. Commun. 2011, 76, 859.
(d) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
(e) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(f) Hopkinson, M. N.; Sahoo, B.; Li, J.-L.; Glorius, F. Chem.-Eur. J. 2014, 20, 3874.
(g) Koike, T.; Akita, M. Inorg. Chem. Front. 2014, 1, 562.
(h) Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355.
(i) Ravelli, D.; Protti, S.; Fagnoni, M. Chem. Rev. 2016, 116, 9850.
(j) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
(k) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898.
(l) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
(m) Staveness, D.; Bosque, I.; Stephenson, C. R. J. Acc. Chem. Res. 2016, 49, 2295.
(n) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 52.
(o) Cao, M.-Y.; Ren, X.; Lu, Z. Tetrahedron Lett. 2015, 56, 3732.
[15] (a) Huang, L.; Ye, L.; Li, X.-H.; Li, Z.-L.; Lin, J.-S.; Liu, X.-Y. Org. Lett. 2016, 18, 5284.
(b) Li, Z.-L.; Li, X.-H.; Wang, N.; Yang, N.-Y.; Liu, X.-Y. Angew. Chem., Int. Ed. 2016, 55, 15100.
(c) Wang, N.; Li, L.; Li, Z.-L.; Yang, N.-Y.; Guo, Z.; Zhang, H.-X.; Liu, X.-Y. Org. Lett. 2016, 18, 6026.
(d) Wang, N.; Wang, J.; Guo, Y.-L.; Li, L.; Sun, Y.; Li, Z.; Zhang, H.-X.; Guo, Z.; Li, Z.-L.; Liu, X.-Y. Chem. Commun. 2018, 54, 8885.
[16] Kim, E.; Choi, S.; Kim, H.; Cho, E. J. Chem.-Eur. J. 2013, 19, 6209.
[17] (a) Jiang, H.; Huang, C.; Guo, J.; Zeng, C.; Zhang, Y.; Yu, S. Chem.-Eur. J. 2012, 18, 15158.
(b) Jiang, H.; Cheng, Y.; Zhang, Y.; Yu, S. Eur. J. Org. Chem. 2013, 2013, 5485.

Outlines

/