Chinese Journal of Organic Chemistry >
Chemoenzymatic Relay Reaction and Its Applications in Highly Efficient and Green Synthesis of High-Value Chiral Compounds
Received date: 2018-07-23
Revised date: 2018-09-25
Online published: 2018-10-26
Supported by
Project supported by the National Natural Science Foundation of China (No. 21004024), the Natural Science Foundation of Fujian Province (No. 2016J01063), the Program for New Century Excellent Talents in Fujian Province (No. 2012FJ-NCET-ZR03), the University Distinguished Young Research Talent Training Program of Fujian Province (No. 11FJPY02) and the Subsidized Project for Postgraduates' Innovative Fund in Scientific Research of Huaqiao University (No. ZQN-YX103).
Compared with traditional chemical catalysis or enzymatic synthesis, chemoenzymatic relay reaction is a simpler, more efficient and economical method. It not only has the advantages of high efficiency and selectivity of enzyme catalysis, but also has the advantages of low price of synthetic raw materials, simple and high efficiency of synthetic process, green and friendly production environment, and excellent optical purity of the obtained product. Thus, chemoenzymatic relay synthesis methods have been widely used in the synthesis of high-value chiral compounds. In recent years, chemists have been committed to making chemoenzymatic catalytic conditions easier by changing catalysts and designing more reasonable ways, which could be used in more fields. In this review, the recent progress in the synthesis of chiral alcohols, epoxides, heterocyclics and other chiral compounds by using chemoenzymatic relay synthesis, such as enzyme and metal catalysis, enzyme and organic catalysis, enzyme and new reaction techniques, is reviewed, and the development trends of this field are also prospected.
Liao Xu , Jiang Yan , Lai Shilin , Liu Yuangang , Wang Shibin , Xiong Xingquan . Chemoenzymatic Relay Reaction and Its Applications in Highly Efficient and Green Synthesis of High-Value Chiral Compounds[J]. Chinese Journal of Organic Chemistry, 2019 , 39(3) : 668 -678 . DOI: 10.6023/cjoc201807038
[1] Katja, G.; Kirsten, S.; Stephan, L.; Andreas, L. Appl. Microbiol. Biotechnol. 2007, 76, 24.
[2] Ni, Y.; Li, C. C.; Ma, H. M.; Zhang, J.; Xu, J. H. Appl. Mierobiol. Biotechnol. 2010, 89, 1111.
[3] Patel, R. N. Coord. Chem. Rev. 2008, 252, 659.
[4] Wang, H.; Zong, M. H.; Wu, H. J. Biotechnology 2007, 129, 689.
[5] Makkee, M.; Kieboom, A. P. G.; van Bekkum, H. J. Chem. Soc., Chem. Commun. 1980, 930.
[6] Allen, J. V.; Williams, J. M. J. Tetrahedron Lett. 1996, 37, 1859.
[7] Dinh, P. M.; Howarth, J. A.; Hudnott, A. R.; Williams, J. M. J.; Harris, W. Tetrahedron Lett. 1996, 37, 7623.
[8] Carr, R.; Alexeeva, M.; Dawson, M. J.; Fernandez, V. G.; Humphrey, C. E.; Turner, N. J. ChemBioChem 2005, 6, 637.
[9] Bisogno, F. R.; Lopez-Vidal, M. G.; de Gonzalob, G. Adv. Synth. Catal. 2017, 359, 2026.
[10] Schrittwieser, J. H.; Velikogne, S.; Hall, M.; Kroutil, W. Chem. Rev. 2018, 118, 270.
[11] Rudroff, F.; Mihovilovic, A. D.; Gröger, H.; Radka, S.; Hans, I.; Uwe, T. B. Nat. Catal. 2018, 1, 12.
[12] Allen, J. V.; Williams, J. M. J. Tetrahedron Lett. 1996, 37, 1859.
[13] Pamies, O.; Backvall, J. E. Chem. Rev. 2003, 103, 3247.
[14] Burda, E.; Hummel, W.; Groger, H. Angew. Chem., Int. Ed. 2008, 47, 9551.
[15] Sato, H.; Hummel, W.; Groger, H. Angew. Chem., Int. Ed. 2015, 54, 4488.
[16] Ahmed, S. T.; Parmeggiani, F.; Weise, N. J.; Flitsch, S. L.; Turner, N. J. ACS Catal. 2015, 5, 5410.
[17] Latham, J.; Henry, J, M.; Sharif, H, H.; Menon, B. R. K.; Shepherd, S. A.; Greaney, M. F.; Micklefield, J. Nat. Commun. 2016, 7, 11873.
[18] Rodriguez-Alvarez, M. J.; Rios-Lombardia, N.; Schumacher, S.; Perez-Iglesias, D.; Moris, F.; Cadierno, V.; Garcia-Alvarez, J.; Gonzalez-Sabín, J. ACS Catal. 2017, 7, 7753.
[19] Denard, C. A.; Bartlett, M. J.; Wang, Y. J.; Lu, L.; Hartwig, J. F.; Zhao, H.-M. ACS Catal. 2015, 5, 3817.
[20] Denard, C. A.; Huang, H.; Bartlett, M. J.; Lu, L.; Tan, Y.; Zhao, H.-M.; Hartwig, J. F. Angew. Chem., Int. Ed. 2014, 53, 465.
[21] Rios-Lombardia, N.; Vidal, C.; Cocina, M.; Moris, F.; Garcia-Alvarez, J.; Gonzalez-Sabin, J. Chem. Commun. 2015, 51, 10937.
[22] Sosa, V.; Melkie, M.; Sulca, C.; Li, J.; Tang, L.; Li, J.; Faris, J.; Foley, B.; Banh, T.; Kato, M.; Cheruzel, L. E. ACS Catal. 2018, 8, 2225.
[23] Haak, R. M.; Berthiol, F.; Jerphagnon, T.; Gayet, A. J. A.; Tarabiono, C.; Postema, C. P.; Ritleng,V.; Pfeffer, M.; Janssen, D. B.; Minnaard, A. J.; Feringa, B. L.; de Vries J. G. J. Am. Chem. Soc. 2008, 130, 135008.
[24] Mutti, F. G.; Orthaber, A.; Schrittwieser, J. H.; de Vries, J. G.; Pietschnig, R.; Kroutil, W. Chem. Commun. 2010, 46, 8046.
[25] Wang, Z. J.; Clary, K. N.; Bergman, R. G.; Raymond, K. N.; Toste, F. D. Nat. Chem. 2013, 5, 100.
[26] Fiedler, D.; Bergman, R. G.; Raymond, K. N. Angew. Chem., Int. Ed. 2006, 45, 745.
[27] Merlau, M. L.; Mejia, M. D. P.; Nguyen, S. T.; Hupp, J. T. Angew. Chem., Int. Ed. 2001, 40, 4239.
[28] Oshovsky, G. V.; Reinhoudt, D. N.; Verboom, W. Angew. Chem., Int. Ed. 2007, 46, 2366.
[29] Schaaf, P.; Gojic, V.; Bayer, T.; Rudroff, F.; Schnurch, M.; Mihovilovic, M. ChemCatChem 2018, 10, 920.
[30] Cuetos, A.; Bisogno, F. R.; Lavandera, I.; Gotor, V. Chem. Commun. 2013, 49, 2625.
[31] Wang, J.-X.; Li, K.; Zhou, X.-J.; Han, W.-Y.; Wan, N.-W.; Cui, B.-D.; Wang, H.-H.; Yuan, W.-C.; Chen, Y.-Z. Tetrahedron Lett. 2017, 58, 2252.
[32] Baer, K.; Krauber, M.; Burda, E.; Hummel, W.; Berkessel, A.; Grçger, H. Angew. Chem., Int. Ed. 2009, 48, 9355.
[33] Rulli, G.; Dunangdee, N.; Baer, K.; Hummel, W.; Berkessel, A.; Grçger, H. Angew. Chem., Int. Ed. 2011, 50, 7944.
[34] Heidlindemann, M.; Rulli, G.; Berkessel, A.; Hummel, W.; Grçger, H. ACS Catal. 2014, 4, 1099.
[35] Simon, R. C.; Busto, E.; Schrittwiesser, J. H.; Sattler, J. H.; Pietruszka, S. J.; Faber, K.; Kroutil, W. Chem. Commun. 2014, 50, 15669.
[36] Akagawa, K.; Kudo, K. Adv. Synth. Catal. 2011, 353, 843.
[37] Akagawa, K.; Fujiwara, T.; Sakamoto, S.; Kudo, K. Chem. Commun. 2010, 46, 8040.
[38] Akagawa, K.; Umezawa, R.; Kudo, K. Beilstein J. Org. Chem. 2012, 8, 1333.
[39] Hafenstine, G. R.; Ma, K.; Harris, A. W.; Yehezkeli, O.; Park, E. Domaille, D. W.; Cha, J. N.; Goodwin, A. P. ACS Catal. 2017, 7, 568.
[40] Sujic, S.; Pietruszka, J.; Worgull, D. Adv. Synth. Catal. 2015, 357, 1822.
[41] Akagawa, K.; Kudo, K. Org. Lett. 2011, 13, 3498.
[42] Parmeggiani, F.; Ahmed, S. T.; Weise, N. J.; Turner, N. J. Tetrahedron 2016, 72, 7256.
[43] Ahmed, S. T.; Parmeggiani, F.; Weise, N. J.; Flitsch, S. L.; Turner, N. J. Org. Lett. 2016, 18, 5468.
[44] Xu, Y.-F.; Wang, M.; Feng, B.; Li, Z.-Y.; Li, Y.-H.; Li, H.-X.; Li, H. Catal. Sci. Technol. 2017, 7, 5838.
[45] Kotlewska, A. J.; Rantwijk, F. V.; Sheldon, R. A.; Arends, I. W. C. E. Green Chem. 2011, 13, 2154.
[46] Zhou, P.-F.; Wang, X.-P.; Yang, B.; Hollmannc, F.; Wang, Y.-H. RSC Adv. 2017, 7, 12518.
/
〈 |
|
〉 |