Chinese Journal of Organic Chemistry >
Virtual Screening, Design, Synthesis and Biological Activity of Zika Virus Inhibitors
Received date: 2018-07-28
Revised date: 2018-10-09
Online published: 2018-10-26
Supported by
Project supported by the National Natural Science Foundation of China (No. 81671395).
NS5 is a protein component which plays a main role in replication of Zika virus, and its component part-methyl-transferase (5M5B) is the central participants of virus replication and host innate immune response. So it is used as the preferred protein of potential antiviral drugs development. Using 5M5B as receptors and using its binding sites to screen with over 2 million small molecule compounds, the leading compounds of anti-Zika virus were obtained. The structural optimization, activity prediction, chemical synthesis and pharmacological activity of the leading compound were studied. All the synthesized compounds were characterized by 1H NMR and 13C NMR. The antiviral activity of compound 3a is better than that of ribavirin (IC50=(7.69±0.36) μmol·L-1 for 3a vs IC50=(8.15±0.42) μmol·L-1 for ribavirin).
Li Yanzhong , Qi Sijia , Xu Yanhao , Xia Chengcai , Duan Guiyun . Virtual Screening, Design, Synthesis and Biological Activity of Zika Virus Inhibitors[J]. Chinese Journal of Organic Chemistry, 2019 , 39(3) : 786 -792 . DOI: 10.6023/cjoc201807053
[1] Miner, J. J.; Diamond, M. S. Cell Host Microbe 2017, 21, 134.
[2] Petersen, L. R.; Jamieson, D. J.; Powers, A. M. New Engl. J. Med. 2016, 374, 1552.
[3] Ye, Q.; Liu, Z. Y.; Han, J. F.; Jiang, T.; Li, X. F.; Qin, C. F. Infect., Genet. Evol. 2016, 43, 43.
[4] Emanuele, N.; Pisapia, R.; Angela, C.; Fusco, F. M.; Stefania, C.; Paola, S.; Vincenzo, P. BMC Infect. Dis. 2016, 16, 669.
[5] Armstrong, N.; Wang, H. H.; Tang, Q. Y. World J. Virol. 2017, 6, 1.
[6] Li, F.; Wang, P. R.; Qu, L. B.; Yi, C. H.; Zhang, F. C.; Tang, X. P.; Zhang, L. G.; Chen, L. Emerging Microbes Infect. 2017, 6, e16.
[7] Richard, A. S.; Shim, B. S.; Kwon, Y. C.; Zhang, R.; Otsuka, Y.; Schmitt, K.; Berri, F.; Diamond, M. S. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 2024.
[8] Wells, M. F.; Max, S. R.; Ole, W.; Ho, D. J.; Kathleen, A. W.; Robert, J. I.; Hill, E. J.; Kane, L. T.; Ye, C.; Kaykas, A.; Eqqan, K. Cell Stem Cell 2016, 19, 703.
[9] Matthew, T. A.; Leda, B.; Cox, B.; Garcia-Blanco, M. A.; Friedrich, T. C.; Golos, T. G.; Griffin, D. E.; Haddow, A. D.; Kallas, E. G.; Kitron, U.; Lecuit, M.; Magnani, D. M.; Marrs, C.; Mercer, N.; McSweegan, E.; Ng, L.F. P.; O'Connor, D. H.; Osorio, J. E.; Ribeiro, G. S.; Ricciardi, M.; Rossi, S. L.; Saade, G.; Schinazi, R. F.; Schott-Lerner, G. O.; Shan, C.; Shi, P. Y.; Watkins, D. I.; Vasilakis, N.; Weaver, S. C. Antiviral Res. 2017, 144, 223.
[10] Hassan, H.; Kamal, N.; Faheem, M. Infect. Disord.:Drug Targets 2017, 17, 3.
[11] Franca, G.; Milo, P.; Christoph, H.; Patricia, S. Travel Med. Infect. Dis. 2016, 14, 313.
[12] Mustafa, M. S.; Brig, R. R. Med. J., Armed Forces India 2018, 74, 61.
[13] Michael, W. Nature. 2017, 546, 355.
[14] Friedrich, M. J. JAMA, J. Am. Med. Assoc. 2016, 316, 1956.
[15] Cao, R. Y.; Xu, Y. F.; Zhang, T. H.; Yang, J. J.; Yuan, Y.; Shi, Y. Open Forum Infect. Dis. 2017, 4, ofx009/1.
[16] Kellie, A. J.; Laura, J. Y.; Patrick, W. W.; Sarah, L.; Anita, J. H. Nat. Microbiol. 2018, 3, 141.
[17] Aft, A.; Nik, I.; Ana, F.; Shahn, A. Biomed. Pharmacother. 2017, 91, 1152.
[18] Bhattacharjee, A. K.; Basak, S. C. Curr. Comput.-Aided Drug Des. 2016, 12, 251.
[19] Lin, H. H.; Yip, B. S.; Huang, L. M.; Wu, S. C. Biotechnol. Adv. 2018, 36, 47.
[20] Xin, Q. L.; Deng, C. L.; Chen, X.; Wang, J.; Wang, S.-B.; Wang, W.; Deng, F.; Zhang, B.; Xiao, G. F.; Zhang, L. K. J. Virol. 2017, 91, e00554-17/1.
[21] Irigoyen, N.; Meredith, L. W.; Brierley, I.; Firth, A. E. BioRxiv, Microbiol. 2017, 1.
[22] Cristina, J.; Fajardo, A.; Sonora, M. Virus Res. 2016, 223, 147.
[23] Wang, B. X.; Thurmond, S.; Hai, R.; Song, J. K. Cell. Mol. Life Sci. 2018, Ahead of Print.
[24] Issur, M.; Geiss, B. J.; Bougie, I.; Picard-Jean, F.; Despins, S.; Mayette, J.; Hobdey, S. E.; Bisaillon, M. Ribonucleic Acids 2009, 15, 2340.
[25] Zhou, Y.; Ray, D.; Zhao, Y.; Dong, H.; Ren, S.; Li, Z.; Bernard, K. A.; Shi, P. Y.; Li, H. J. Virol. 2007, 81, 3891.
[26] Keasey, S. L.; Pugh, C. L.; Jensen, S. M. R.; Smith, J. L.; Durbin, A. P.; Dudley, D. M.; O'Connor, D. H.; Ulrich, R. G. Clin. Vaccine Immunol. 2017, 24, e00036-17/1.
[27] Duan, W. Q; Song, H.; Wang, H.-Y; Chai, Y.; Su, C.; Qi, J.-X; Shi, Y.; Gao, G. F. EMBO J. 2017, 36, 919.
[28] Contreras, D. J. Visualized Exp. 2016, 114, e54767/1.
[29] Eyer, L.; Nencka, R.; Huvarova, I.; Alves, M. J.; Gould, E. A. J. Infect. Dis. 2016, 214, 707.
[30] Lee, H.; Ren, J. H.; Nocadello, S.; Rice, A. J.; Ojeda, I.; Light, S.; Vargas, J.; Nagarathnam, D.; Anderson, W. F.; Johnson, M. Antiviral Res. 2017, 139, 49.
[31] Li, Z.; Brecher, M.; Deng, Y. Q.; Zhang, J.; Sakamuru, S.; Liu, B.; Huang, R. L.; Allen, C. A.; Jones, S. A.; Chen, H.; Zhang, N. N.; Tian, M.; Gao, F. S.; Lin, Q. S.; Banavali, N.; Zhou, J.; Boles, N.; Xia, M. H. G.; Kramer, L. D.; Qin, C. F.; Li, H. M. Cell Res. 2017, 27, 1046.
[32] Gaudinski, M. R.; Houser, K. V.; Morabito, K. M.; Hu, Z.; Yamshchikov, G.; Rothwell, R. S.; Berkowitz, N.; Mendoza, F.; Saunders, J. G.; Novik, L.; Hendel, C. S.; Holman, L. A.; Gordon, I. J.; Cox, J. H.; Edupuganti, S.; McArthur, M. A.; Rouphael, N. G.; Lyke, K. E.; Cummings, G. E.; Sitar, S.; Bailer, R. T.; Foreman, B. M.; Burgomaster, K.; Pelc, R. S.; Gordon, D. N.; DeMaso, C. R.; Dowd, K. A.; Laurencot, C.; Schwartz, R. M.; Mascola, J. R.; Graham, B. S.; Pierson, T. C.; Ledgerwood, J. E.; Chen, G. L. Lancet (London, England) 2018, 391, 552.
[33] Yu, W.; Mac, K. Methods in Molecular Biology, Humana Press, New York, United States, 2017, 1520(Antibiotics), 85.
[34] Singh, A.; Jana, N. K. Comput. Biol. Chem. 2017, 71, 144.
[35] Xiong, L.; Li, H.; Jiang, L. N.; Ge, J. M.; Yang, W. C.; Zhu, X. L.; Yang, G. F. J. Agric. Food Chem. 2017, 65, 1021.
[36] Zhu, X. L.; Xiong, L.; Li, H.; Song, X. Y.; Liu, J. J.; Yang, G. F. ChemMedChem 2014, 9, 1512.
/
〈 |
|
〉 |