Chinese Journal of Organic Chemistry >
Recent Advances in Ni-Catalyzed Allylic Substitution Reactions
Received date: 2018-09-28
Revised date: 2018-09-28
Online published: 2018-10-26
Supported by
Project supported by the National Key R&D Program of China (No. 2016YFA0202900), the National Basic Research Program of China (973 Program, No. 2015CB856600), the National Natural Science Foundation of China (Nos. 21332009, 21572250, 21572252), and the Chinese Academy Sciences (Nos. XDB20000000, QYZDY-SSW-SLH012).
Transition-metal catalyzed allylic substitution reaction is an important approach for constructing carbon-carbon bond and carbon-heteroatom bond. Due to its cheapness, easy access, and wide applicability in organic synthesis, nickel has attracted intense attention. Over the past 50 years, nickel-catalyzed allylic substitution reactions have been extensively studied. The progresses on nickel-catalyzed allylic substitution reactions and their applications in organic synthesis are summarized according to bond formation and nucleophilic reagent.
Key words: allylic substitution; asymmetric catalysis; nickel; transition metal
Zhang Huijun , Gu Qing , You Shuli . Recent Advances in Ni-Catalyzed Allylic Substitution Reactions[J]. Chinese Journal of Organic Chemistry, 2019 , 39(1) : 15 -27 . DOI: 10.6023/cjoc201809037
[1] For selected reviews, see:(a) Helmchen, G. J. Organomet. Chem. 1999, 576, 203.
(b) Tenaglia, A.; Heumann, A. Angew. Chem., Int. Ed. 1999, 38, 2180.
(c) Trost, B. M. Chem. Pharm. Bull. 2002, 50, 1.
(d) Kazmaier, U. Curr. Org. Chem. 2003, 7, 317.
(e) Trost, B. M. J. Org. Chem. 2004, 69, 5813.
(f) Jensen, T.; Fristrup, P. Chem.-Eur. J. 2009, 15, 9632.
(g) Milhau, L.; Guiry, P. J. Top. Organomet. Chem. 2012, 38, 95.
[2] For selected reviews, see:(a) Takeuchi, R.; Kezuka, S. Synthesis 2006, 3349.
(b) Helmchen, G.; Dahnz, A.; Dübon, P.; Schelwies, M.; Weihofen, R. Chem. Commun. 2007, 675.
(c) Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res. 2010, 43, 1461.
(d) Hartwig, J. F.; Pouy, M. J. Top. Organomet. Chem. 2011, 34, 169.
(e) Liu, W.-B.; Xia, J.-B.; You, S.-L. Top. Organomet. Chem. 2012, 38, 155.
(f) Tosatti, P.; Nelson, A.; Marsden, S. P. Org. Biomol. Chem. 2012, 10, 3147.
(g) Helmchen, G. In Molecular Catalysis, Eds.:Gade, L. H.; Hofmann, P., Wiley-VCH, Weinheim, 2014, pp. 235~254.
(h) Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2014, 47, 2558.
(i) Hethcox, J. C.; Shockley, S. E.; Stoltz, B. M. ACS Catal. 2016, 6, 6207.
(j) Qu, J.; Helmchen, G. Acc. Chem. Res. 2017, 50, 2539.
[3] For selected reviews, see:(a) Evans, P. A.; Nelson, J. D. J. Am. Chem. Soc. 1998, 120, 5581.
(b) Selvakumar, K.; Valentini, M.; Pregosin, P. S.; Albinati, A. Organometallics 1999, 18, 4591.
(c) Hayashi, T.; Okada, A.; Suzuka, T.; Kawatsura, M. Org. Lett. 2003, 5, 1713.
(d) Ashfeld, B. L.; Miller, K. A.; Martin, S. F. Org. Lett. 2004, 6, 1321.
[4] For selected reviews, see:(a) Minami, I.; Shimizu, I.; Tsuji, J. J. Organomet. Chem. 1985, 296, 269.
(b) Zhang, S.-W.; Mitsudo, T.; Kondo, T.; Watanabe, Y. J. Organomet. Chem. 1993, 450, 197.
(c) Matsushima, Y.; Onitsuka, K.; Kondo, T.; Mitsudo, T.; Takahashi, S. J. Am. Chem. Soc. 2001, 123, 10405.
(d) Trost, B. M.; Fraisse, P. L.; Ball, Z. T. Angew. Chem., Int. Ed. 2002, 41, 1059.
(e) Mbaye, M. D.; Demerseman, B.; Renaud, J.-L.; Toupet, L.; Bruneau, C. Angew. Chem., Int. Ed. 2003, 42, 5066.
(f) Hermatschweiler, R.; Fernandez, I.; Breher, F.; Pregosin, P. S.; Veiros, L. F.; Calhorda, M. J. Angew. Chem., Int. Ed. 2005, 44, 4397.
(g) Kawatsura, M.; Ata, F.; Wada, S.; Hayase, S.; Uno, H.; Itoh, T. Chem. Commun. 2007, 298.
[5] For selected reviews, see:(a) Consiglio, G.; Waymouth, R. M. Chem. Rev. 1989, 89, 257.
(b) Ho, C.-Y.; Schleicher, K. D.; Chan, C.-W.; Jamison, T. F. Synlett 2009, 2565.
(c) Pigge, F. C. Synthesis 2010, 1745.
[6] Henrion, M.; Ritleng, V.; Chetcuti, M. J. ACS Catal. 2015, 5, 1283.
[7] For selected examples, see:(a) Schaub, T.; Backes, M.; Radius, U. J. Am. Chem. Soc. 2006, 128, 15964.
(b) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346.
(c) Li, B.-J.; Yu, D.-G.; Sun, C.-L.; Shi, Z.-J. Chem.-Eur. J. 2011, 17, 1728.
(d) Tobisu, M.; Xu, T.; Shimasaki, T.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 19505.
[8] Chuit, C.; Felkin, H.; Frajerman, C.; Roussi, G.; Swierczewski, G. Chem. Commun. 1968, 1604.
[9] Felkin, H.; Swierczewski, G. Tetrahedron Lett. 1972, 15, 1433.
[10] Felkin, H.; Joly-Goudket, M.; Davies, S. G. Tetrahedron Lett. 1981, 22, 1157.
[11] Consiglio, G.; Morandini, F.; Piccolol, O. Helv. Chim. Acta 1980, 63, 987.
[12] Consiglio, G.; Morandini, F.; Piccolo, O. J. Chem. Soc., Chem. Commun. 1983, 112.
[13] Consiglio, G.; Piccolo, O.; Roncetti, L.; Morandini, F. Tetrahedron 1986, 42, 2043.
[14] Hiyama, T.; Wakasa, N. Tetrahedron Lett. 1985, 26, 3259.
[15] Nomura, N.; RajanBabu, T. V. Tetrahedron Lett. 1997, 38, 1713.
[16] Gomez-Bengoa, E.; Heron, N. M.; Didiuk, M. T.; Luchaco, C. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1998, 120, 7649.
[17] Chung, K.-G.; Miyake, Y.; Uemura, S. J. Chem. Soc., Perkin Trans. 12000, 2725.
[18] Trost, B. M.; Spagnol, M. D. J. Chem. Soc., Perkin Trans. 11995, 2083.
[19] (a) Kobayashi, Y.; Ikeda, E. J. Chem. Soc., Chem. Commun. 1994, 1789.
(b) Kobayashi, Y.; Tokoro, Y.; Watatani, K. Eur. J. Org. Chem. 2000, 3825.
(c) Kobayashi, Y.; Watatani, K.; Kikori, Y.; Mizojiri, R. Tetrahedron Lett. 1996, 37, 6125.
(d) Kobayashi, Y.; Takahisa, E.; Usmani, S. B. Tetrahedron Lett. 1998, 39, 597.
(e) Kobayashi, Y.; Takahisa, E.; Usmani, S. B. Tetrahedron Lett. 1998, 39, 601.
(f) Jimenez-Aquino, A.; Flegeau, E. F.; Schneider, U.; Kobayashi, S. Chem. Commun. 2011, 47, 9456.
[20] Chung, K.-G.; Miyake, Y.; Uemura, S. J. Chem. Soc., Perkin Trans. 1 2000, 15.
[21] Chen, H.; Deng, M.-Z. J. Organomet. Chem. 2000, 603, 189.
[22] (a) Shields, J. D.; Ahneman, D. T.; Graham, T. J. A.; Doyle, A. G. Org. Lett. 2014, 16, 142.
(b) Sylvester, K. T.; Wu, K.; Doyle, A. G. J. Am. Chem. Soc. 2012, 134, 16967.
(c) Graham, T. J. A.; Shields, J. D.; Doyle, A. G. Chem. Sci. 2011, 2, 980.
[23] Srinivas, H. D.; Zhou, Q.; Watson, M. P. Org. Lett. 2014, 16, 3596.
[24] Nazari, S. H.; Bourdeau, J. E.; Talley, M. R.; Valdivia-Berroeta, G. A.; Smith, S. J.; Michaelis, D. J. ACS Catal. 2018, 8, 86.
[25] Chau, S. T.; Lutz, J. P.; Wu, K.; Doyle, A. G. Angew. Chem., Int. Ed. 2013, 52, 9153.
[26] For some recent examples synthesis of biologically active 4-piperidines, see:(a) Tawara, J. N.; Lorenz, P. F.; Stermitz, R. J. Nat. Prod. 1999, 62, 321.
(b) Watson, P. S.; Jiang, B.; Scott, B. Org. Lett. 2000, 2, 3679.
(c) Brooks, C. A.; Comins, D. L. Tetrahedron Lett. 2000, 41, 3551.
[27] (a) Wu, D.; Wang, Z.-X. Org. Biomol. Chem. 2014, 12, 6414.
(b) Wu, D.; Tao, J.-L.; Wang, Z.-X. Org. Chem. Front. 2015, 2, 265.
[28] Tao, J.-L.; Yang, B.; Wang, Z.-X. J. Org. Chem. 2015, 80, 12627.
[29] Yang, B.; Wang, Z.-X. J. Org. Chem. 2017, 82, 4542.
[30] Bricout, H.; Carpentier, J.-F.; Mortreux, A. J. Chem. Soc., Chem. Commun. 1995, 1863.
[31] Bricout, H.; Carpentier, J.-F.; Mortreux, A. Tetrahedron Lett. 1996, 37, 6105.
[32] Sha, S.-C.; Jiang, H.; Mao, J.; Bellomo, A.; Jeong, S. A.; Walsh, P. J. Angew. Chem., Int. Ed. 2016, 55, 1070.
[33] For selected examples, see:(a) Lu, X.; Lu, L. J. Organomet. Chem. 1986, 307, 285.
(b) Lu, X.; Lu, L.; Sun, J. J. Mol. Catal. 1987, 41, 245.
(c) Lu, X.; Jiang, X.; Tao, X. J. Organomet. Chem. 1988, 344, 109.
[34] For selected examples, see:(a) Starý, I.; Stará, I. G.; Kocovský, P. Tetrahedron Lett. 1993, 34, 179.
(b) Starý, I.; Stará, I. G.; Kocovský, P. Tetrahedron 1994, 50, 529.
(c) Tamaru, Y.; Horino, Y.; Araki, M.; Tanaka, S.; Kimura, M. Tetrahedron Lett. 2000, 41, 5705.
(d) Takacs, J. M.; Jiang, X.-T.; Leonov, A. P. Tetrahedron Lett. 2003, 44, 7075.
(e) Kimura, M.; Mukai, R.; Tanigawa, N.; Tanaka, S.; Tamaru, Y. Tetrahedron 2003, 59, 7767.
[35] Itoh, K.; Hamaguchi, N.; Miura, M.; Nomura, M. J. Chem. Soc., Perkin Trans. 11992, 1, 2833.
[36] Kita, Y.; Kavthe, R. D.; Oda, H.; Mashima, K. Angew. Chem., Int. Ed. 2016, 55, 1098.
[37] Blieck, R.; Azizi, M. S.; Mifleur, A.; Roger, M.; Persyn, C.; Sauthier, M.; Bonin, H. Eur. J. Org. Chem. 2016, 1194.
[38] Bernhard, Y.; Thomson, B.; Ferey, V.; Sauthier, M. Angew. Chem., Int. Ed. 2017, 56, 7460.
[39] For selected examples, see:(a) Kimura, M.; Horino, Y.; Mukai, R.; Tanaka, S.; Tamaru, Y. J. Am. Chem. Soc. 2001, 123, 10401.
(b) Kimura, M.; Shimizu, M.; Shibata, K.; Tazoe, M.; Tamaru, Y. Angew. Chem., Int. Ed. 2003, 42, 3392.
[40] Jiang, G.; List, B. Adv. Synth. Catal. 2011, 353, 1667.
[41] For selected examples, see:(a) Ibrahem, I.; Clrdova, A. Angew. Chem., Int. Ed. 2006, 45, 1952.
(b) Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336.
(c) Jiang, G.; List, B. Angew. Chem., Int. Ed. 2011, 50, 9471.
[42] Wang, J.; Wang, P.; Wang, L.; Li, D.; Wang, K.; Wang, Y.; Zhu, H.; Yang, D.; Wang, R. Org. Lett. 2017, 19, 4826.
[43] Ngamnithiporn, A.; Jette, C. I.; Bachman, S.; Virgil, S. C.; Stoltz, B. M. Chem. Sci. 2018, 9, 2547.
[44] Cui, D.-M.; Hashimoto, N.; Ikeda, S.-I.; Sato, Y. J. Org. Chem. 1995, 60, 5752.
[45] For selected examples, see:(a) Ng, S.-S.; Ho, C.-Y.; Schleicher, K. D.; Jamison, T. F. Pure Appl. Chem. 2008, 80, 929.
(b) Ogoshi, S.; Haba, T.; Ohashi, M. J. Am. Chem. Soc. 2009, 131, 10350.
[46] Matsubara, R.; Jamison, T. F. J. Am. Chem. Soc. 2010, 132, 6880.
[47] Matsubara, R.; Gutierrez, A. C.; Jamison, T. F. J. Am. Chem. Soc. 2011, 133, 19020.
[48] For selected examples, see:(a) Miller, J. A.; Negishi, E.-I. Tetrahedron Lett. 1984, 25, 5863.
(b) Sabarre, A.; Love, J. Org. Lett. 2008, 10, 3941.
[49] For selected examples, see:(a) Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1979, 101, 4992.
(b) Kamlage, S.; Sefkow, M.; Peter, M. G. J. Org. Chem. 1999, 64, 2938.
(c) Zhang, S.; Marshall, D.; Liebeskind, L. S. J. Org. Chem. 1999, 64, 2796.
(d) Perez, I.; Sestelo, J. P.; Sarandeses, L. A. J. Am. Chem. Soc. 2001, 123, 4155.
[50] Standley, E. A.; Jamison, T. F. J. Am. Chem. Soc. 2013, 135, 1585.
[51] Furukawa, J.; Kui, J.; Yamamoto, K.; Tojo, T. Tetrahedron 1973, 29, 3149.
[52] Moberg, C. Tetrahedron Lett. 1980, 21, 4539.
[53] Yamamoto, T.; Ishizu, J.; Yamamoto, A. J. Am. Chem. Soc. 1981, 103, 6863.
[54] Bricout, H.; Carpentier, J.-F.; Mortreux, A. Tetrahedron 1998, 54, 1073.
[55] Berkowitz, D. B.; Maiti, G. Org. Lett. 2004, 6, 2661.
[56] Kita, Y.; Sakaguchi, H.; Hoshimoto, Y.; Nakauchi, D.; Nakahara, Y.; Carpentier, J.-F.; Ogoshi, S.; Mashima, K. Chem.-Eur. J. 2015, 21, 14571.
[57] For selected examples, see:(a) Brunkan, N. M.; Jones, W. D. J. Organomet. Chem. 2003, 683, 77.
(b) Brunkan, N. M.; Brestensky, D. M.; Jones, W. D. J. Am. Chem. Soc. 2004, 126, 3627.
(c) Chaumonnot, A.; Lamy, F.; Sabo-Etienne, S.; Donnadieu, B.; Chaudret, B.; Barthelat, J.-C.; Galland, J.-C. Organometallics 2004, 23, 3363.
(d) Acosta-Ramírez, A.; Muñoz-Hernández, M.; Jones, W. D.; Garcia, J. J. J. Organomet. Chem. 2006, 691, 3895.
[58] Azizi, M. S.; Edder, Y.; Karim, A.; Sauthier, M. Eur. J. Org. Chem. 2016, 3796.
[59] Cuvigny, T.; Julia, M. J. Organomet. Chem. 1983, 250, C21.
[60] Yatsumonji, Y.; Ishida, Y.; Tsubouchi, A.; Takeda, T. Org. Lett. 2007, 9, 4603.
/
〈 |
|
〉 |