Reviews

Polyethylene Glycol: A New Medium for Green Organic Synthesis

  • Xiao Liwei ,
  • Dai Fucai ,
  • Li Zheng ,
  • Jing Xuemin ,
  • Kong Jie ,
  • Liu Guangxian
Expand
  • Faculty of Chemistry and Material Science, Langfang Normal University, Langfang 065000

Received date: 2018-07-31

  Revised date: 2018-10-15

  Online published: 2018-11-12

Supported by

Project supported by the Educational Commission of Hebei Province (No. ZD2016046).

Abstract

Polyethylene glycols (PEG) can dissolve a lot of organic compounds and metallic complexes. Moreover, they are thermally stable, nonvolatile, non-toxic, biodegradable, inexpensive and recyclable. Thus, PEG as green medium has been successfully employed in many organic reactions, such as carbon-carbon coupling reaction, carbon-hetero coupling reaction, multicomponent reaction, condensation reaction, addition reaction, substitution reaction, oxidation reaction, reductive reaction, and so on. The recent advances of PEG applied in orgainc synthesis are reviewed.

Cite this article

Xiao Liwei , Dai Fucai , Li Zheng , Jing Xuemin , Kong Jie , Liu Guangxian . Polyethylene Glycol: A New Medium for Green Organic Synthesis[J]. Chinese Journal of Organic Chemistry, 2019 , 39(3) : 648 -660 . DOI: 10.6023/cjoc201807056

References

[1] Zhang, M.; Liu, Y.-H.; Shang, Z.-R.; Hu, H.-C.; Zhang, Z.-H. Catal. Commun. 2017, 88, 39.
[2] Zhang, M.; Fu, Q.-Y.; Gao, G.; He, H.-Y.; Zhang, Y.; Wu, Y.-S.; Zhang, Z.-H. ACS Sustainable Chem. Eng. 2017, 5, 6175.
[3] Gu, Y. Green Chem. 2012, 14, 2091.
[4] Liu, P.; Hao, J.-W.; Mo, L.-P.; Zhang. Z.-H. RSC Adv. 2015, 5, 48675.
[5] Gao, G.; Wang, P.; Liu, P.; Zhang, W.; Mo, L.; Zhang, Z. Chin. J. Org. Chem. 2018, 38, 846(in Chinese). (高歌, 王萍, 刘鹏, 张卫红, 默丽萍, 张占辉, 有机化学, 2018, 38, 846.)
[6] Chen, J.; Spear, S. K.; Huddleston, J. G.; Rogers, R. D. Green Chem. 2005, 7, 64.
[7] Zhou, H.; Fan, Q.; He, Y.; Gu, L.; Chan, A. S. C. Prog. Chem. 2007, 19, 1517(in Chinese). (周海峰, 范青华, 何艳梅, 古练权, 陈新滋, 化学进展, 2007, 19, 1517.)
[8] Yin, L.; Zhang, Z.-H.; Wang, Y.-M. Tetrahedron 2006, 62, 9359.
[9] Li, J.; Liu, W.; Xie, Y. J. Org. Chem. 2005, 70, 5409.
[10] Li, J.; Hu, X.; Liang, Y.; Xie, Y. Tetrahedron 2006, 62, 3.
[11] Liu, L.; Zhang, Y.; Wang, Y. J. Org. Chem. 2005, 70, 6122.
[12] Silva, A.; Senra, J.; Aguiar, L. Tetrahedron Lett. 2010, 51, 3883.
[13] Han, W.; Liu, C.; Jin, Z. Org. Lett. 2007, 9, 4005.
[14] Razler, T. M.; Hsiao, Y.; Qian, F.; Fu, R.; Khan, R. K.; Doubleday, W. J. Org. Chem. 2009, 74, 1381.
[15] Mao, J.; Guo, J.; Fang, F.; Ji, S.-J. Tetrahedron 2008, 64, 3905.
[16] Chandrasekhar, S.; Narsihmulu, C.; Sultana, S. S.; Reddy, N. R. Org. Lett. 2002, 4, 4399.
[17] Nowrouzi, N.; Zarei, M. Tetrahedron 2015, 71, 7847.
[18] Declerck, V.; Lamaty, F. Eur. J. Org. Chem. 2007, 1, 201.
[19] Luo, C.; Zhang, Y.; Wang, Y. J. Mol. Catal. A:Chem. 2005, 229, 7
[20] Datta, G. K.; Schenck, H.; Hallberg, A.; Larhed, M. J. Org. Chem. 2006, 71, 3896.
[21] Zhou, W; Wang, K.; Wang, J. J. Org. Chem. 2009, 74, 5599.
[22] Xin, B.; Zhang, Y.; Cheng, K. J. Org. Chem. 2006, 71, 5725.
[23] Close, A. J.; Kemmitt, P.; Emmerson, M. K.; Spence, J. Tetrahedron 2014, 70, 9125.
[24] Ackermann, L.; Vicénte, R. Org. Lett. 2009, 11, 4922.
[25] Kabalka, G. W.; Dong, G.; Venkataiah, B.; Chen, C. J. Org. Chem. 2005, 70, 9207.
[26] Li, J.-H.; Zhu, Q.-M.; Liang, Y.; Yang, D. J. Org. Chem. 2005, 70, 5347.
[27] Shi, S.; Zhang, Y. J. Org. Chem. 2007, 72, 5927.
[28] Srimani, D.; Sawoo, S.; Sarkar, A. Org. Lett. 2007, 9, 3639.
[29] Bortolini, O.; Fantin, G.; Fogagnolo, M.; Giovannini, P. P.; Venturi, V.; Pacifico, S.; Massi, A. Tetrahedron 2011, 67, 8110.
[30] Mao, J.; Hua, Q.; Xie, G.; Yao, Z.; Shi, D. Eur. J. Org. Chem. 2009, 2262.
[31] Wang, L.; Zhang, Y.; Liu, L.; Wang, Y. J. Org. Chem. 2006, 71, 1284.
[32] Li, X.; Yuan, T.; Yang, Y.; Chen, J. Tetrahedron 2004, 70, 9652
[33] Chen, J.; Zhang, Y.; Hao, W.; Zhang, R.; Yi, F. Tetrahedron 2013, 69, 613.
[34] Colacino, E.; Villebrun, L.; Martinez, J.; Lamaty, F. Tetrahedron 2010, 66, 3730.
[35] Burley, G. A.; Davies, D. L.; Griffith, G. A.; Lee, M.; Singh, K. J. Org. Chem. 2010, 75, 980.
[36] Spina, R.; Colacino, E.; Gabriele, B.; Salerno, G.; Martinez, J.; Lamaty, F. J. Org. Chem. 2013, 78, 2698.
[37] Lara, R. G.; Rosa, P. C.; Soares, L. K.; Silva, M. S.; Jacob, R. G.; Perin, G. Tetrahedron 2012, 68, 10414.
[38] Chatterjee, T.; Ranu, B. C. J. Org. Chem. 2013, 78, 7145.
[39] Firouzabadi, H.; Iranpoor, N.; Abbasi, M. Tetrahedron 2009, 65, 5293.
[40] She, J.; Jiang, Z.; Wang, Y. G. Tetrahedron Lett. 2009, 50, 593.
[41] Lu, J.; Guan, Z.-Z.; Gao, J.-W.; Zhang, Z.-H. Appl. Organomet. Chem. 2011, 25, 537.
[42] Wang, P.; Lu, J.; Zhang, Z.-H. J. Chem. Res. 2013, 359
[43] Xiao, L.; Gao, H.; Ren, L.; Kang, J. Chin. J. Appl. Chem. 2015, 32, 304(in Chinese). (肖立伟, 高红杰, 任立磊, 康健, 应用化学, 2015, 32, 304.)
[44] Yang, X.; Li, C.; Ma, J.; Wang, C.; Zhang, L. Chem. Res. Appl. 2010, 22, 1004(in Chinese). (杨旭哲, 李超, 马晶军, 王春, 张灵芝, 化学研究与应用, 2010, 22, 1004.)
[45] Modugu, N. R.; Pittala, P. K. New J. Chem. 2017, 41, 14062.
[46] Zhang, X.-N.; Li, Y.-X.; Zhang, Z-H. Tetrahedron 2011, 67, 7426.
[47] Zareai, Z.; Khoobi, M.; Ramazani, A.; Foroumadi, A.; Souldozi, A.; Slepokura, K.; Lis, T.; Shafiee, A. Tetrahedron 2012, 68, 6721.
[48] Balwe, S. G.; Lim, K. T.; Cho, B. G.; Jeong, Y. T. Tetrahedron 2017, 73, 3564.
[49] Jain, S. L.; Singhal, S.; Sain, B. Green Chem. 2007, 9, 740.
[50] Kidwai, M.; Bhatnagar, D. Tetrahedron Lett. 2010, 51, 2700.
[51] Kidwai, M.; Bhatnagar, D.; Mishra, N. K. Catal. Commun. 2008, 9, 2547.
[52] Hasaninejad, A.; Beyrati, M. RSC Adv. 2018, 8, 1934.
[53] Survase, D.; Bandgar, B.; Helavi, V. Synth. Commun. 2017, 47, 680.
[54] Reddy, M. V.; Kim, J. S.; Lim, K. T.; Jeong, Y. T Tetrahedron Lett. 2014, 55, 6459.
[55] Chandrasekhar, S.; Prakash, S. J.; Rao, C. L. J. Org. Chem. 2006, 71, 2196.
[56] Xu, C.; Huang, B.; Yan, T.; Cai, M. Green Chem. 2018, 20, 391.
[57] Wang, X.; Quan, Z.; Zhang, Z. Tetrahedron 2007, 63, 8227.
[58] Kumar, D.; Patel, G.; Mishra, B. G.; Varma, R. S. Tetrahedron Lett. 2008, 49, 6974.
[59] Billault, I.; Pessel, F.; Petit, A.; Turgis, R.; Scherrmann, M.-C. New J. Chem. 2015, 39, 1986.
[60] Kumaraswamy, G.; Ankamma, K.; Pitchaiah, A. J. Org. Chem. 2007, 72, 9822.
[61] Chandrasekhar, S.; Reddy, N. R.; Sultana, S. S.; Narsihmulu, C.; Reddy, K. V. Tetrahedron 2006, 62, 338.
[62] Dawane, B. S.; Konda, S. G.; Shaikh, B. M.; Bhosale, R. B. Acta Pharm. 2009, 59, 473.
[63] Liu, Y.; Liang, J.; Liu, X. H.; Fan, J. C.; Shang, Z. C. Chin. Chem. Lett. 2008, 19, 1043.
[64] Wang, X.; Ye, H.; Quan, Z. J. Northwest Normal Univ. (Nat. Sci.) 2009, 45, 79(in Chinese). (王喜存, 叶鹤琳, 权正军, 西北师范大学学报(自然科学版), 2009, 45, 79.)
[65] Ballini, R.; Barboni, L.; Alessandro, P. Green Chem. 2008, 10, 1004.
[66] Yadav, G. D.; Motirale, B. G. Org. Process Res. Dev. 2009, 13, 341.
[67] Guravaiah, N.; Rao, V. R. J. Chem. Res. 2009, 237.
[68] Jawale, D. V.; Lingampalle, D. L.; Pratap, U. R.; Mane, R. A. Chin. Chem. Lett. 2010, 21, 412.
[69] Zhu, D.; Chen, J.; Xiao, H.; Liu, M.; Ding, J.; Wu, H. Synth. Commun. 2009, 39, 2895,
[70] Lin, P.; Hou, R.; Wang, H.; Kang, I.; Chen, L. J. Chin. Chem. Soc. 2009, 56, 455.
[71] Mukhopadhyay, C.; Tapaswi, P. K. Tetrahedron Lett. 2008, 49, 6237.
[72] Deligeorgiev, T. G.; Kaloyanova, S.; Vasilev, A.; Vaquero, J. J. Phosphorus, Sulfur Silicon Relat. Elem. 2010, 185, 2292.
[73] Liu, L.; Zhang, F.; Wang, H.; Zhu, N.; Liu, B.; Hong, H.; Han, L. Phosphorus, Sulfur Silicon Relat. Elem. 2017, 192, 464.
[74] Wang, X.; Gong, H.; Quan, Z.; Li, L.; Ye, H. Chin. Chem. Let. 2009, 20, 44.
[75] Wang, J.; Song, X. J. Northwest Normal Univ. (Nat. Sci.) 2010, 46, 78(in Chinese). (王进贤, 宋宪伟, 西北师范大学学报(自然科学版), 2010, 46, 78.)
[76] Nalage, S. V.; Kalyankar, M. B.; Patil, V. S.; Bhosale, S. V.; Deshmukh, S. U.; Pawar, R. P. Open Catal. J. 2010, 3, 58.
[77] Xiao, L.; Gao, H.; Kong, J.; Liu, G.; Li, L.; Duan, J. Chin. J. Org. Chem. 2014, 34, 2511(in Chinese). (肖立伟, 高红杰, 孔洁, 刘光仙, 李玲玲, 段敬丹, 有机化学, 2014, 34, 2511.)
[78] Rao, H. S. P.; Jothilingama, S.; Scheerenb, H. W. Tetrahedron 2004, 60, 1625.
[79] Zhao, H.; Zhang, T.; Yan, T.; Cai, M. J. Org. Chem. 2015, 80, 8849.
[80] Mukhopadhyay, C.; Tapaswi, P. K.; Butcher, R. J. Org. Biomol. Chem. 2010, 8, 4720.
[81] Nakka, M.; Tadikonda, R.; Rayavarapu, S.; Sarakula, P.; Vidavalur, S. Synthesis 2015, 47, 517.
[82] Cho, C. S.; Ren, W. X.; Yoon, N. S. J. Mol. Catal. A:Chem. 2009, 299, 117.
[83] Zhang, X. Z.; Wang, J. X.; Sun, Y. J.; Zhan, H. W. Chin. Chem. Lett. 2010, 21, 395.
[84] He, Q.; Wang, J.; Feng, R. Lett. Org. Chem. 2010, 7, 172.
[85] Jorapur, Y.; Rajagopal, G.; Saikia, P.; Pal, R. R. Tetrahedron Lett. 2008, 49, 1495.
[86] Liang, J.; Lv, J.; Shang, Z. C. Tetrahedron 2011, 67, 8532.
[87] Liao, Y.; Wei, T.; Yan, T.; Cai, M. Tetrahedron 2017, 73, 1238.
[88] Wang, J.-Q.; Cai, F.; Wang, E.; He, L.-N. Green Chem. 2007, 9, 882.
[89] Chandrasekhar, S.; Reddy, N. K.; Kumar, V. P. Tetrahedron Lett. 2010, 51, 3623.
[90] Guo, W.; Liu, Y.; Li, C. Org. Lett. 2017, 19, 1044
[91] Martirosyan, A.; Tamazyan, R.; Gasparyan, S.; Alexanyan, M.; Panosyan, H.; Martirosyan, V.; Schinazi, R. Tetrahedron Lett. 2010, 51, 231.
[92] Zhou, H. F.; Fan, Q. H.; Huang, Y. Y.; Wu, L.; He, Y. M.; Tang, W. J.; Gu, L. Q.; Chan, A. S. C. J. Mol. Catal. A:Chem. 2007, 275, 47.
[93] Liu, W.; Wang, F. Tetrahedron Lett. 2017, 58, 1673.
[94] Ding, M.; Jiang, X.; Peng, J.; Zhang, L.; Cheng, Z.; Zhu, X. Green Chem. 2015, 17, 271.
[95] Huang, X.; Liu, J.; Sheng, J.; Song, X.; Du, Z.; Li, M.; Zhang, X.; Zou, Y. Green Chem. 2018, 20, 804.
[96] Zhang, Z.-H. Monatsh. Chem. 2005, 136, 1191.

Outlines

/