Articles

Benzodithiophene/Benzothiadiazole-Based ADA-Type Optoelectronic Molecules: Influence of Fluorine Substitution

  • Liang Long ,
  • Liu Li-Na ,
  • Chen Xue-Qiang ,
  • Xiang Xuan ,
  • Ling Jun ,
  • Lu Zheng-Quan ,
  • Li Jing-Jing ,
  • Li Wei-Shi
Expand
  • a Zhengzhou Engineering Research Center for High Performance Organic Functional Materials, Zhengzhou Institute of Technology, Zhengzhou 450044;
    b Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032;
    c Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 320027

Received date: 2018-08-28

  Revised date: 2018-10-25

  Online published: 2018-11-12

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21474129, 21674125, 51761145043), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB20020000), the Science and Technology Open Cooperation Projects of Henan Province (Nos. 162106000018, 172106000067) and the Zhengzhou Institute of Technology.

Abstract

Fluorination on conjugated components is one of popular strategies to modify organic optoelectronic materials. Following the research of a benzodithiophene/benzothiadiazole ADA-type optoelectronic molecule, two benzothiadiazole (BT) units were fluorinated with different numbers and positions, and the change in basic properties and performances for field-effect transistors and organic solar cells was investigated. It was found that when the F-substitution number increases, the molecule enhances thermal stability, decreases solubility, lowers HOMO and LUMO energy levels, but almost does not alter light absorption range. Furthermore, investigations on organic field-effect transistors found the molecular hole mobility reduces with only one F-substituent at outer position of BT units, while increases up to 0.27 cm2·V-1·s-1 with two F substituents on BT units. However, when these materials are applied in organic solar cells, the fluorinated ones enhance open-circuit voltage, but deteriorate active layer morphology, finally leading to decrease in short-circuit current and device efficiency.

Cite this article

Liang Long , Liu Li-Na , Chen Xue-Qiang , Xiang Xuan , Ling Jun , Lu Zheng-Quan , Li Jing-Jing , Li Wei-Shi . Benzodithiophene/Benzothiadiazole-Based ADA-Type Optoelectronic Molecules: Influence of Fluorine Substitution[J]. Chinese Journal of Organic Chemistry, 2019 , 39(1) : 157 -169 . DOI: 10.6023/cjoc201808034

References

[1] (a) Brabec, C. J.; Gowrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S.; Williams, S. P. Adv. Mater. 2010, 22, 3839.
(b) Facchetti, A. Chem. Mater. 2011, 23, 733.
(c) Ilmi, R.; Haque, A.; Khan, M. S. Org. Electr. 2018, 58, 53.
(d) Guo, H.; Li, W.; Chang, C.; Guo, X.; Zhang, M. Chin. J. Chem. 2018, 36, 502.
(e) Liang, X.; Wang, Z.; Wang, L.; Hanif, M.; Hu, D.; Su, S.; Xie, Z.; Gao, Y.; Yang, B.; Ma, Y. Chin. J. Chem. 2017, 35, 1559.
[2] (a) Zhao, X.; Zhan, X. Chem. Soc. Rev. 2011, 40, 3728.
(b) Di, C.; Yu, G.; Liu, Y.; Zhu, D. J. Phys. Chem. B 2007, 111, 14083.
(c) Zaumseil, J.; Sirringhaus, H. Chem. Rev. 2007, 107, 1296.
[3] (a) Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. Nature 2009, 459, 234.
(b) Yang, X.; Zhou, G.; Wong, W. Y. Chem. Soc. Rev. 2015, 44, 8484.
(c) Jou, J. H.; Kumar, S.; Agrawal, A.; Li, T. H.; Sahoo, S. J. Mater. Chem. C 2015, 3, 2974.
[4] Chem, H.; Chen, Y.; Li, Z.; Yang, Q.; Xin, L. Chin. J. Org. Chem. 2012, 32, 46(in Chinese). (陈红海, 陈玉哲, 李仲谨, 杨清正, 辛利, 有机化学, 2012, 32, 46.)
[5] (a) Zhang, G.; Zhang, K.; Yin, Q.; Jiang, X. F.; Wang, Z.; Xin, J.; Ma, W.; Yan, H.; Huang, F.; Cao, Y. J. Am. Chem. Soc. 2017, 139, 2387.
(b) Li, M.; Gao, K.; Wan, X.; Zhang, Q.; Kan, B.; Xia, R.; Liu, F.; Yang, X.; Feng, H.; Ni, W.; Wang, Y.; Peng, J.; Zhang, H.; Liang, Z.; Yip, H.-L.; Peng, X.; Cao, Y.; Chen, Y. Nat. Photonics 2017, 11, 85.
(c) Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. Nat. Energy 2016, 1, 15027.
(d) Deng, D.; Zhang, Y. J.; Zhang, J. Q.; Wang, Z. Y.; Zhu, L. Y.; Fang, J.; Xia, B. Z.; Wang, Z.; Lu, K.; Ma, W.; Wei, Z. X. Nat. Commun. 2016, 7, 13740.
(e) Li, Y. F. Acc. Chem. Res. 2012, 45, 723.
(f) Yang, F.; Li, C.; Lai, W.; Zhang, A.; Huang, H.; Li, W. Mater. Chem. Front. 2017, 1, 1389.
(g) Liu, W.; Zhou, Z.; Vergote, T.; Xu, S.; Zhu, X. Mater. Chem. Front. 2017, 1, 2349.
[6] (a) Zhang, J.; Zhang, Y.; Fang, J.; Lu, K.; Wang, Z.; Ma, W.; Wei, Z. J. Am. Chem. Soc. 2015, 137, 8176.
(b) Li, G.; Chu, C. W.; Shrotriya, V.; Huang, J.; Yang, Y. Appl. Phys. Lett. 2006, 88, 253503.
(c) Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J. Science 2007, 317, 222.
(d) He, Z.; Zhong, C.; Huang, X.; Wong, W.-Y.; Wu, H.; Chen, L.; Su, S.; Cao, Y. Adv. Mater. 2011, 23, 4636.
[7] (a) Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864.
(b) Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Nat. Mater. 2007, 6, 497.
(c) Zimmerman, J. D.; Xiao, X.; Renshaw, C. K.; Wang, S.; Diev, V. V.; Thompson, M. E.; Forrest, S. R. Nano Lett. 2012, 12, 4366.
(d) Wang, J. L.; Xiao, F.; Yan, J.; Wu, Z.; Liu, K. K.; Chang, Z. F.; Zhang, R. B.; Chen, H.; Wu, H. B.; Cao, Y. Adv. Funct. Mater. 2016, 26, 1803.
(e) Liu, X.; Ye, L.; Zhao, W.; Zhang, S.; Li, S.; Su, G. M.; Wang, C.; Ade, H.; Hou, J. Mater. Chem. Front. 2017, 1, 2057.
[8] (a) Neugebauer, H.; Brabec, C.; Hummelen, J. C.; Sariciftci, N. S. Sol. Energy Mater. Sol. Cells 2000, 61, 35.
(b) Lu, L.; Kelly, M. A.; You, W.; Yu, L. Nat. Photonics 2015, 9, 491.
(c) Min, J.; Luponosov, Y. N.; Gasparini, N.; Richter, M.; Bakirov, A. V.; Shcherbina, M. A.; Chvalun, S. N.; Grodd, L.; Grigorian, S.; Ameri, T.; Ponomarenko, S. A.; Brabec, C. J. Adv. Energy Mater. 2015, 5, 1500386.
[9] Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; Yip, H.-L.; Cao, Y.; Chen, Y. Science 2018, 361, 1094.
[10] (a) Lei, Y.; Deng, P.; Zhang, Q.; Xiong, Z.; Li, Q.; Mai, J.; Lu, X.; Zhu, X.; Ong, B. S. Adv. Funct. Mater. 2018, 28, 1706372.
(b) Kang, I.; Yun, H. J.; Chung, D. S.; Kwon, S. K.; Kim, Y. H. J. Am. Chem. Soc. 2013, 135, 14896.
[11] (a) Xiao, S.; Zhang, Q.; You, W. Adv. Mater. 2017, 29, 1601391.
(b) Zhang, Z.; Li, Y. Sci. China:Chem. 2015, 58, 192.
(c) Chen, H.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G. W.; Yang, Y.; Yu, L.; Wu, Y.; Li, G. Nat. Photonics 2009, 3, 649.
[12] (a) Tang, M. L.; Bao, Z. A. Chem. Mater. 2011, 23, 446.
(b) Oh, J.; Kranthiraja, K.; Lee, C.; Gunasekar, K.; Kim, S.; Ma, B.; Kim, B. J.; Jin, S.-H. Adv. Mater. 2016, 28, 10016.
(c) Stuart, A. C.; Tumbleston, J. R.; Zhou, H.; Li, W.; Liu, S.; Ade, H.; You, W. J. Am. Chem. Soc. 2013, 135, 1806.
[13] (a) Zhang, M.; Guo, X.; Zhang, S.; Hou, J. Adv. Mater. 2014, 26, 1118.
(b) Kawashima, K.; Fukuhara, T.; Suda, Y.; Suzuki, Y.; Koganezawa, T.; Yoshida, H.; Ohkita, H.; Osaka, I.; Takimiya, K. J. Am. Chem. Soc. 2016, 138, 10265.
[14] Reichenbacher, K.; Suss, H. I.; Hulliger, J. Chem. Soc. Rev. 2005, 34, 22.
[15] Lu, L.; Yu, L. Adv. Mater. 2014, 26, 4413.
[16] (a) Yoon, M.-H.; DiBenedetto, S. A.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 1348.
(b) Heidenhain, S. B.; Sakamoto, Y.; Suzuki, T.; Miura, A.; Fujikawa, H.; Mori, T.; Tokito, S.; Taga, Y. J. Am. Chem. Soc. 2000, 122, 10240.
[17] Liang, Y.; Feng, D.; Wu, Y.; Tsai, S.-T.; Li, G.; Ray, C.; Yu, L. J. Am. Chem. Soc. 2009, 131, 7792.
[18] Son, H. J.; Wang, W.; Xu, T.; Liang, Y.; Wu, Y.; Li, G.; Yu, L. J. Am. Chem. Soc. 2011, 133, 1885.
[19] (a) Zhang, Y.; Chien, S.-C.; Chen, K.-S.; Yip, H.-L.; Sun, Y.; Davies, J. A.; Chen, F.-C.; Jen, A. K.-Y. Chem. Commun. 2011, 47, 11026.
(b) Schroeder, B. C.; Huang, Z.; Ashraf, R. S.; Smith, J.; D¢Angelo, P.; Watkins, S. E.; Anthopoulos, T. D.; Durrant, J. R.; McCulloch, I. Adv. Funct. Mater. 2012, 22, 1663.
[20] (a) Zhou, H.; Yang, L.; Stuart, A. C.; Price, S. C.; Liu, S.; You, W. Angew. Chem., Int. Ed. 2011, 50, 2995.
(b) Peng, Q.; Liu, X.; Su, D.; Fu, G.; Xu, J.; Dai, L. Adv. Mater. 2011, 23, 4554.
[21] Hu, J.; Wang, X.; Chen, F.; Xiao, B.; Tang, A.; Zhou, E. Polymers 2017, 9, 516.
[22] (a) Roncali, J. Acc. Chem. Res. 2009, 42, 1719.
(b) Li, Y.; Guo, Q.; Li, Z.; Pei, J.; Tian, W. Energy Environ. Sci. 2010, 3, 1427.
(c) Walker, B.; Kim, C.; Nguyen, T.-Q. Chem. Mater. 2011, 23, 470.
(d) Mishra, A.; Bauerle, P. Angew. Chem., Int. Ed. 2012, 51, 2020.
[23] Liang, L.; Wang, J.-T.; Xiang, X.; Ling, J.; Zhao, F.-G.; Li, W.-S. J. Mater. Chem. A 2014, 2, 15396.
[24] van der Poll, T. S.; Love, J. A.; Nguyen, T.-Q.; Bazan, G. C. Adv. Mater. 2012, 24, 3646.
[25] He, C.-Y.; Wu, C.-Z.; Zhu, Y.-L.; Zhang, X. Chem. Sci. 2014, 5, 1317.
[26] Mei, C.-Y.; Liang, L.; Zhao, F.-G.; Wang, J.-T.; Yu, L.-F.; Li, Y.-X.; Li, W.-S. Macromolecules 2013, 46, 7920.
[27] (a) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
(b) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
(c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
(d) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
[28] (a) Hohenberg. P.; Kohn, W.; Phys. Rev. 1964, 136, B864(b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B:Condens. Matter Mater. Phys. 1988, 37, 785.
[29] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. J.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Gaussian, Inc., Wallingford CT, 2004.
[30] Wang, J.-L.; Chang, Z.-F.; Song, X.-X.; Liu, K.-K.; Jing, L.-M. J. Mater. Chem. 2015, 3, 9849.

Outlines

/