Chinese Journal of Organic Chemistry >
Palladium-Catalyzed Intramolecular Fluoroarylation of Alkenes
Received date: 2018-10-20
Revised date: 2018-12-03
Online published: 2018-12-05
Supported by
Project supported by he National Key R&D Program of China (973 Program, No. 2015CB856600), the National Natural Science Foundation of China (Nos. 21532009, 21672236, 21761142010, 21790330) and the Science Technology Commission of the Shanghai Municipality (Nos. 17QA1405200, 17JC1401200), and the Chinese Academy Sciences (Nos. XDB20000000, QYZDJSSW-SLH055) and the Youth Innovation Promotion Association (No.2018292).
A novel palladium-catalyzed intramolecular fluoroarylation of alkenes has been developed, in which ArIF2 was employed as fluorine source as well as I(Ⅲ) reagent to activate olefin, to deliver the fluoroarylation products from 4-aryl- 1-olefins in moderate to good yields. The current transformation presents a convenient method to provide fluorotetralins and fluorochromanes under mild conditions from alkenes tethered arenes.
Key words: palladium-catalyzed; alkenes; fluoroarylation; tetralin
Yang Wencheng , Qi Xiaoxu , Chen Pinhong , Liu Guosheng . Palladium-Catalyzed Intramolecular Fluoroarylation of Alkenes[J]. Chinese Journal of Organic Chemistry, 2019 , 39(1) : 122 -128 . DOI: 10.6023/cjoc201810026
[1] (a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
(b) Wang, J.; Sánchez-Rosellyó, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
(c) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
[2] For reviews, see:(a) Cahard, D.; Xu, X.; Couve-Bonnaire, S.; Pannecoucke, X. Chem. Soc. Rev. 2010, 39, 558.
(b) Grushin, V. V. Acc. Chem. Res. 2010, 43, 160.
(c) Liu, G. Org. Biomol. Chem. 2012, 6243.
(d) Wolstenhulme, J. R.; Gouverneur, V. Acc. Chem. Res. 2014, 47, 3560.
(e) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
(f) Campbell, M. G.; Ritter, T. Chem. Rev. 2015, 115, 612.
[3] For the selected examples on aminofluorination, see:(a) Wu. T.; Yin, G.; Liu, G. J. Am. Chem. Soc. 2009, 131, 16354.
(b) Qiu, S.; Xu, T.; Zhou, J.; Guo, Y. Liu, G. J. Am. Chem. Soc. 2010, 132, 2856.
(c) Kong, W.; Feige, P.; de Haro, T.; Nevado, C. Angew. Chem., Int. Ed. 2013, 52, 2469.
(d) Li, Z.; Song, L.; Li, C. J. Am. Chem. Soc. 2013, 135, 4640.
(e) Huang, H.-T.; Lacy, T. C.; Blachut, B.; Ortiz Jr, G. X.; Wang, Q. Org. Lett. 2013, 15, 1818.
(f) Li, Z.; Zhang, C.; Zhu, L.; Liu, C.; Li, C. Org. Chem. Front. 2014, 1, 100.
(g) Zhang, H.; Song, Y.; Zhao, J.; Zhang, J.; Zhang, Q. Angew. Chem., Int. Ed. 2014, 53, 11079.
(h) Cui, J.; Jia, Q.; Feng, R.-Z.; Liu, S.-S.; He, T.; Zhang, C. Org. Lett. 2014, 16, 1442.
(i) Lu, D.-F.; Liu, G.-S.; Zhu, C.-L.; Yuan, B.; Xu, H. Org. Lett. 2014, 16, 2912.
(j) Yuan, W.; Szabo, K. J. Angew. Chem. Int. Ed. 2015, 54, 8533.
(k) Lu, D.-F.; Zhu, C.-L.; Sears, J. D.; Xu, H. J. Am. Chem. Soc. 2016, 138, 11360.
[4] For selected examples on oxyfluorination, see:(a) Wilkinson, S. C.; Lozano, O.; Schuler, M.; Pacheco, M. C.; Salmon, R.; Gouverneur, V. Angew. Chem., Int. Ed. 2009, 48, 7083.
(b) Rauniyar, V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D. Science 2011, 334, 1681.
(c) Peng, H.; Yuan, Z.; Wang, H.-Y., Guo, Y.-L.; Liu, G. Chem. Sci. 2013, 4, 3172.
(d) Egami, H.; Asada, J.; Sato, K.; Hashizume, D.; Kawato, Y.; Hamashima, Y. J. Am. Chem. Soc. 2015, 137, 10132.
(e) Geary, G. C.; Hope, E. G.; Stuart, A. M. Angew. Chem., Int. Ed. 2015, 54, 14911.
[5] For selected examples on carbofluorination, see:(a) Cochrane, N. A.; Nguyen, H.; Gagne, M. R. J. Am. Chem. Soc. 2013, 135, 628.
(b) Zhu, L.; Chen, H.; Wang Z.; Li, C. Org. Chem. Front. 2014, 1, 1299.
(c) Wang, H.; Guo, L.-N.; Duan, X.-H. Chem. Commun. 2014, 50, 7382.
(d) Liu, Z.; Chen, H.; Lv, Y.; Tan, X.; Shen, H.; Yu, H.-Z.; Li, C. J. Am. Chem. Soc. 2018, 140, 6169.
[6] Other fluorination of alkenes, see:(a) Barker, T. J.; Boger, D. L. J. Am. Chem. Soc. 2012, 134, 13588.
(b) Zhang, C.; Li, Z.; Zhu, L.; Yu, L.; Wang, Z.; Li, C. J. Am. Chem. Soc. 2013, 135, 14082.
(c) Emer, E.; Pfeifer, L.; Brown, J. M.; Gouverneur, V. Angew. Chem., Int. Ed. 2014, 53, 4181.
(d) Yuan, Z.; Wang, H.-Y.; Mu, X.; Chen, P.; Guo, Y.-L.; Liu, G. J. Am. Chem. Soc. 2015, 137, 2468.
(e) Banik, S. M.; Medley, J. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 5000.
(f) Molnár, I. G.; Gilmour, R. J. Am. Chem. Soc. 2016, 138, 5004.
(g) Banik, S. M.; Medley, J. M.; Jacobsen, E. N. Science 2016, 353, 51.
(h) Woerly, E. M.; Banik, S. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 13858.
[7] (a) Talbot, E. P. A.; Fernandes, T. A.; McKenna, J. M.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 4101.
(b) He, Y.; Yang, Z.; Thornbury, R. T.; Toste, F. D. J. Am. Chem. Soc. 2015, 137, 12207.
(c) Miró, J.; de Pozo, C.; Toste, F. D.; Fustero, S. Angew. Chem., Int. Ed. 2016, 55, 9045.
(d) Thornbury, R. T.; Saini, V.; Fernandes, T. A.; Santiago, C. B.; Talbot, E. P. A.; Sigman, M. S.; McKenna, J. M.; Toste, F. D. Chem. Sci. 2017, 8, 2890.
[8] Tang, H.-J.; Lin, L.-Z.; Feng, C.; Loh, T.-P. Angew. Chem., Int. Ed. 2017, 56, 9872.
[9] (a) Guo, R.; Yang, H.; Tang, P. Chem. Commun. 2015, 51, 8829.
(b) Kindt, S.; Heinrich, M. R. Chem. Eur. J. 2014, 20, 15344.
[10] Yin, G.; Mu, X.; Liu, G. Acc. Chem. Res. 2016, 49, 2413.
[11] (a) Li, M.; Yu, F.; Qi, X.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2016, 55, 13843.
(b) Li, M.; Yu, F.; Chen, P.; Liu, G. J. Org. Chem. 2017, 82, 11682.
(c) Qi, X.; Yu, F.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2017, 56, 12692.
[12] (a) Taniguchi, K.; Nagano, M.; Hattori, K.; Tsubaki, K.; Okitsu, O.; Tabuchi, S. US 5763489, 1998.
(b) Poirier, D. Anticancer Agents Med. Chem. 2009, 9, 642.
[13] Ventre, S.; Petronijevic, F. R.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 5654.
[14] (a) Kang, Y.-B.; Gade, L. H. J. Am. Chem. Soc. 2011, 133, 3658.
(b) Izquierdo, S.; Essafi, S.; del Rosal, I.; Vidossich, P.; Pleixats, R.; Vallribera, A.; Ujaque, G.; Lledós, A.; Shafir, A. J. Am. Chem. Soc. 2016, 138, 12747.
[15] Liu, R.; Lu, Z.-H.; Hu, X.-H.; Li, J.-L.; Yang, X.-J. Org. Lett. 2015, 17, 1489.
[16] (a) Qiu, S.; Xu, T.; Zhou, J.; Guo, Y.-L.; Liu, G. J. Am. Chem. Soc. 2010, 132, 2856.
(b) Peng, H.; Yuan, Z.; Wang, H.-Y.; Guo, Y.-L.; Liu, G. Chem. Sci. 2013, 4, 3172.
[17] Sharma, H.; Santra, S.; Debnath, J.; Antonio, T.; Reith, M.; Dutta, A. Bioorg. Med. Chem. 2014, 22, 311.
[18] Choi, P. J.; Rathwell, D. C. K.; Brimble, M. A. Tetrahedron Lett. 2009, 50, 3245.
[19] Parrish, J. P.; Sudaresan, B.; Jung, K. W. Synth. Commun. 1999, 29, 4423.
[20] Hanamoto,T.; Shindo, K.; Matsuoka, M.; Kiguchi, Y.; Kondo, M. J. Chem. Soc., Perkin Trans. 1 2000, 103.
/
〈 |
|
〉 |