Chinese Journal of Organic Chemistry >
Theoretical Advances on the Mechanism of Transition Metal-Catalyzed C—F Functionalization
Received date: 2018-10-18
Revised date: 2018-12-05
Online published: 2018-12-07
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21822303, 21772020), the Basic and Frontier Research Project of Chongqing Science and Technology Commission (No. cstc2018jcyjAX0827), the Project of Science and Technology Collaborative Innovation Platform Construction of Chongqing University of Education (No. 2017XJPT01), the University-Level Key Projects of Chongqing University of Education (No. KY201704A), the Scientific Research Foundation of Chongqing University of Education (No. 2017BSRC001).
Organic fluorine chemistry has attracted considerable attention due to its unique character in the field of materials science, catalytic chemistry, medicine, fine chemicals and biochemistry, which majorly focus on the construction and cleavage of carbon-fluorine bonds. The transition metals are introduced to allow new possibilities for activating carbon-fluorine bonds and are gradually becoming an alternative way to synthesize numerous complex organics containing fluorine. In this review, the recent works on the theoretical mechanistic study for transition metals mediated carbon-fluorine bonds activation and cleavage are summarized. Meanwhile, the general modes of carbon-fluorine bonds activation have been concluded systematically, including the oxidative addition of carbon-fluorine bonds to transition metals, transition-metal-activated nucleophilic substitution, SN2 type activation of carbon(sp3)-fluorine bonds and β-fluorine elimination, etc. The theoretical calculation shows that the reaction could be proceed by an oxidation addition mode, when the zero-valent nickel catalyst with strong reducibility is employed. However, if a zero-valent platinum catalyst is used, oxidation addition only occurs at extra activated carbon-fluorine bonds. In the reduction of polyfluorinated aromatic hydrocarbons by hydrogenated metal species, aromatic nucleophilic substitution between hydride and polyfluorinated aromatic hydrocarbons could occur to realize the activation of carbon-fluoride bonds. For carbon(sp3)-fluorine bonds, if “hard” Lewis base such as lithium or magnesium salt is employed, the carbon(sp3)-fluorine bonds can be activated via bimolecular nucleophilic substitution (SN2). In addition, β-fluoride elimination is also frequently proposed in transition metal-catalyzed C—F functionalizations.
Li Yuanyuan , Wang Yuanjian , Zhu Lei , Qu Lingbo , Lan Yu . Theoretical Advances on the Mechanism of Transition Metal-Catalyzed C—F Functionalization[J]. Chinese Journal of Organic Chemistry, 2019 , 39(1) : 38 -46 . DOI: 10.6023/cjoc201810020
[1] Brown, J. M.; Gouverneur, V. Angew. Chem., Int. Ed. 2009, 48, 8610.
[2] Furuya, T.; Klein, J. E. M. N.; Ritter, T. Synthesis 2010, 1804.
[3] Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.
[4] Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
[5] Clark, J. H.; Wails, D.; Bastock, T. W. Aromatic Fluorination, CRC Press, Boca Raton, FL, 1996.
[6] Kirsch, P. Modern Fluoroorganic Chemistry:Synthesis, Reactivity, Applications, Wiley, Weinheim, Germany, 2004.
[7] Zeng, Z.; Zhang, T.; Yue, X. Y.; Zhang, H.; Bai, R. P.; Lan, Y. Sci. Sin. Chim. 2018, 48, 736(in Chinese). (曾珍, 张涛, 岳小雨, 张华, 白若鹏, 蓝宇, 中国科学, 2018, 48, 736.)
[8] Doherty, N. M.; Hoffmann, N. W. Chem. Rev. 1991, 91, 553.
[9] Torrens, H. Coord. Chem. Rev. 2005, 249, 1957.
[10] Kiplinger, J. L.; Richmond, T. G.; Osterberg, C. E. Chem. Rev. 1994, 94, 373.
[11] Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
[12] Wang, J.; Roselló, M. S.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
[13] O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308.
[14] Wang, L. Ph.D. Dissertation, Shandong University, Ji'nan 2016 (in Chinese). (王麟, 博士论文, 山东大学, 济南, 2016.)
[15] McGrady, J. E.; Perutz, R. N.; Reinhold, M. J. Am. Chem. Soc. 2004, 126, 5268.
[16] Bosque, R.; Clot, E.; Fantacci, S.; Maseras, F.; Eisenstein, O.; Perutz, R. N.; Renkema, K. B.; Caulton, K. G. J. Am. Chem. Soc. 1998, 120, 12634.
[17] Jasim, N. A.; Perutz, R. N.; Whitwood, A. C.; Braun, T.; Izundu, J.; Neumann, B.; Rothfeld, S.; Stammler, H. G. Organometallics 2004, 23, 6140.
[18] Cronin, L.; Higgitt, C. L.; Karch, R.; Perutz, R. N. Organometallics 1997, 16, 4920.
[19] Vela, J.; Smith, J. M.; Yu, Y.; Ketterer, N. A.; Flaschenriem, C. J.; Lachicotte, R. J.; Holland, P. L. J. Am. Chem. Soc. 2005, 127, 7857
[20] Lindup, R. J.; Marder, T. B.; Perutz, R. N.; Whitwood, A. C. Chem. Commun. 2007, 3664.
[21] Lin, Y.; Zhu, L.; Lan, Y.; Rao, Y. Chem.-Eur. J. 2015, 21, 14937.
[22] Shan, C. H.; Luo, X. L.; Qi, X. T.; Liu, S.; Li, Y. Z.; Lan, Y. Organometallics 2016, 35, 1440.
[23] Liu, R. R.; Zhu, L.; Hu, J. P.; Lu, C. J.; Gao, J. R.; Lan, Y.; Jia, Y. X. Chem. Commun. 2017, 53, 5890.
[24] Ye, J. H.; Zhu, L.; Yan, S. S.; Miao, M.; Zhang, X. C.; Zhou, W. J.; Li, J.; Lan, Y.; Yu, D. G. ACS Catal. 2017, 7, 8324.
[25] Kang, K.; Liu, S. S.; Xu, T.; Wang, D. C.; Leng, X. B.; Bai, R. P.; Lan, Y.; Shen, Q. L. Organometallics 2017, 36, 4727.
[26] Li, Y. Z.; Zou, L. F.; Bai, R. P.; Lan, Y. Org. Chem. Front. 2018, 5, 615.
[27] Zhu, L.; Ye, J. H.; Duan, M.; Qi, X. T.; Yu, D. G.; Bai, R. P.; Lan, Y. Org. Chem. Front. 2018, 5, 633.
[28] Yuan, C. C.; Zhu, L.; Zeng, R. S.; Lan, Y.; Zhao, Y. S. Angew. Chem., Int. Ed. 2018, 57, 1277.
[29] Braun, T.; Cronin, L.; Higgitt, C. L.; McGrady, J. E.; Perutz, R. N.; Reinhold, M. New J. Chem. 2001, 25, 19.
[30] Braun, T.; Perutz, R. N. Chem. Commun. 2002, 2749.
[31] Wang, T. L.; Yu, Z. Y.; Hoon, D. L.; Huang, K. W.; Lan, Y.; Lu, Y. X. Chem. Sci. 2015, 6, 4912.
[32] Duan, M.; Zhu, L.; Qi, X. T.; Yu, Z. Y.; Li, Y. Z.; Bai, R. P.; Lan, Y. Sci. Rep. 2017, 7, 7619.
[33] Braun, T.; Perutz, R. N.; Sladek, M. I. Chem. Commun. 2001, 2254.
[34] Burdeniuc, J.; Jedlicka, B.; Crabtree, R. H. Chem. Ber. 1997, 130, 145.
[35] Wilhelm, R.; Widdowson, D. A. J. Chem. Soc., Perkin Trans. 1 2000, 3808.
[36] Braun, T.; Noveski, D.; Ahijado, M.; Wehmeier, F. Dalton Trans. 2007, 3820.
[37] Kiso, Y.; Tamao, K.; Kumada, M. J. Organomet. Chem. 1973, 50, 12.
[38] Tamao, K.; Sumitani, K.; Kiso, Y.; Zembayashi, M.; Fujioka, A.; Kodama, S.; Nakajima, I.; Minato, A.; Kumada, M. Bull. Chem. Soc. Jpn. 1976, 49, 1958.
[39] Nishimine, T.; Taira, H.; Tokunaga, E.; Shiro, M.; Shibata, N. Angew. Chem., Int. Ed. 2016, 55, 359.
[40] Okusu, S.; Okazaki, H.; Tokunaga, E.; Soloshonok, V. A.; Shibata, N. Angew. Chem., Int. Ed. 2016, 55, 6744.
[41] Zhang, X.; Liu, Y.; Chen, G.; Pei, G.; Bi, S. Organometallics 2017, 36, 3739.
[42] Doi, R.; Kikushima, K.; Ohashi, M.; Ogoshi, S.; J. Am. Chem. Soc. 2015, 137, 3276.
[43] Ohashi, M.; Shibata, M.; Ogoshi, S. Angew. Chem. 2014, 126, 13796.
[44] Ohashi, M.; Kambara, T.; Hatanaka, T.; Saijo, H.; Doi, R.; Ogoshi, S. J. Am. Chem. Soc. 2011, 133, 3256.
[45] Qi, X. T.; Li, Y. Z.; Bai R.P.; Lan, Y. Acc. Chem. Res. 2017, 50, 2799.
[46] Liu, S.; Qi, X. T.; Qu, L. B.; Bai, R. P.; Lan, Y. Catal. Sci. Technol. 2018, 8, 1645.
[47] Li, Y. Y.; Chen, Y. H.; Shan, C. H.; Zhang, J.; Xu, D. D.; Bai, R. P.; Qu, L. B.; Lan, Y. Chin. J. Org. Chem. 2018, 38, 1885(in Chinese). (李园园, 程玉华, 单春晖, 张敬, 徐冬冬, 白若鹏, 屈凌波, 蓝宇, 有机化学, 2018, 38, 1885.)
[48] Li, Y. Z.; Liu, S.; Qi, Z. S.; Qi, X. T.; Li, X. W.; Lan, Y. Chem.-Eur. J. 2015, 21, 10131.
[49] Luo, Y. X.; Liu, S.; Xu, D.; Qu, L. B.; Luo, X. L.; Bai, R. P.; Lan, Y. J. Organomet. Chem. 2018, 864, 148.
[50] Hofmann, P.; Unfried, G. Chem. Ber. 1992, 125, 659.
[51] Belt, S. T.; Helliwell, M.; Jones, W. D.; Partridge, M. G.; Perutz, R. N. J. Am. Chem. Soc. 1993, 115, 1429.
[52] Schaub, T.; Radius, U. Chem.-Eur. J. 2005, 11, 5024.
[53] Belt, S. T.; Duckett, S. B.; Helliwell, M.; Perutz, R. N. J. Chem. Soc., Chem. Commun. 1989, 928.
[54] Jasim, N. A.; Perutz, R. N. J. Am. Chem. Soc. 2000, 122, 8685.
[55] Braun, T.; Cronin, L.; Higgitt, C. L.; McGrady, J. E.; Perutz, R. N.; Reinhold, M. New J. Chem. 2001, 25, 19.
[56] Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119.
[57] Fuchibe, K.; Ohshima, Y.; Mitomi, K.; Akiyama, T. J. Fluorine Chem. 2007, 128, 1158.
[58] Braun, T.; Noveski, D.; Ahijado, M. Wehmeier, F. Dalton Trans. 2007, 3820.
[59] Meier, G.; Braun, T. Angew. Chem., Int. Ed. 2009, 48, 1546.
[60] Braun, T.; Perutz, R. N. Chem. Commun. 2002, 2749.
[61] Shan, C. H.; Zhu, L.; Qu, L. B.; Bai, R. P.; Lan, Y. Chem. Soc. Rev. 2018, 47, 7552.
[62] Shan, C. H.; Zhong, K. B.; Qi, X. T.; Xu. D. D.; Qu, L. B.; Bai, R. P.; Lan, Y. Org. Chem. Front. 2018, 5, 3178.
[63] Chen, C. H.; Luo, Y. X.; Fu, L.; Chen, P. H.; Lan, Y.; Liu, G. S. J. Am. Chem. Soc. 2018, 140, 1207.
[64] Zhang, H.; Wang, H. Y.; Luo, Y. X.; Chen, C. H.; Gao, Y. M.; Chen, P. H.; Guo, Y. L.; Lan, Y.; Liu, G. S. ACS Catal. 2018, 8, 2173.
[65] Yin, Y. Z.; Yue, X. Y.; Zhong, Q.; Jiang, H. M.; Bai, R. P.; Lan, Y.; Zhang, H. Adv. Synth. Catal. 2018, 360, 1639.
[66] Yuan, C. C.; Zhu, L.; Chen, C. P.; Chen, X. L.; Yang, Y.; Lan, Y.; Zhao, Y. S. Nat. Commun. 2018, 9, 1189.
[67] Yao, W. J.; Yu, Z. Y.; Wen, S.; Ni, H. Z.; Ullah, N.; Lan, Y.; Lu, Y. X. Chem. Sci. 2017, 8, 5196.
[68] Yu, Z. Y.; Lan, Y. J. Org. Chem. 2013, 78, 11501.
[69] Yue, X. Y.; Shan, C. H.; Qi, X. T.; Luo, X. L.; Zhu, L.; Zhang, T.; Li, Y. Y.; Li, Y. Z.; Bai, R. P.; Lan, Y. Dalton Trans. 2018, 47, 1819.
[70] Li, J. J.; Zhang, D. J.; Sun, H. J.; Li, X. Y. Org. Biomol. Chem. 2014, 12, 1897.
[71] Reade, S. P.; Mahon, M. F.; Whittlesey, M. K. J. Am. Chem. Soc. 2009, 131, 1861.
[72] Murphy, E. F.; Murugavel, R.; Roesky, H. W. Chem. Rev. 1997, 97, 3425.
[73] Torrens, H. Coord. Chem. Rev. 2005, 249, 1957.
[74] Vela, J.; Smith, J. M.; Yu, Y.; Ketterer, N. A.; Flaschenriem, C. J.; Lachicotte, R. J.; Holland, P. L. J. Am. Chem. Soc. 2005, 127, 7857.
[75] Fahey, D. R.; Mahan, J. E. J. Am. Chem. Soc. 1977, 99, 2501.
[76] Fahey, D. R.; Mahan, J. E. J. Am. Chem. Soc. 1977, 99, 522.
[77] Reinhold, M.; McGrady, J. E.; Perutz, R. N. J. Am. Chem. Soc. 2004, 126, 5268.
[78] Nova, A.; Erhardt, S.; Jasim, N. A. Perutz, R. N.; Macgregor, S. A.; McGrady, J. E.; Whitwood, A. C. J. Am. Chem. Soc. 2008, 130, 15499.
[79] Schaub, T.; Fischer, P.; Steffen, A.; Braun, T.; Radius, U.; Mix, A. J. Am. Chem. Soc. 2008, 130, 9304.
[80] Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Acc. Chem. Res. 1995, 28, 154.
[81] Jasim, N. A.; Perutz, R. N.; Whitwood, A. C.; Braun, T.; Izundu, J.; Neumann, B.; Rothfeld, S.; Stammler, H. G. Organometallics 2004, 23, 6140.
[82] Macgregor, S. A.; Roe, D. C.; Marshall, W. J.; Bloch, K. M.; Bakhmutov, V. I.; Grushin, V. V. J. Am. Chem. Soc. 2005, 127, 15304.
[83] Kozuch, S.; Amatore, C.; Jutand, A.; Shaik, S. Organometallics 2005, 24, 2319.
[84] Blum, O.; Frolow, F.; Milstein, D. J. Chem. Soc., Chem. Commun. 1991, 258.
[85] Su, M.; Chu, S. Inorg. Chem. 1998, 37, 3400.
[86] Erhardt, S.; Macgregor, S. A. J. Am Chem. Soc. 2008, 130, 15490.
[87] Johnson, S. A.; Mroz, N. M.; Valdizon, R.; Murray, S. Organometallics 2011, 30, 441.
[88] McKay, D.; Riddlestone, I. M.; Macgregor, S. A.; Mahon, M. F.; Whittlesey, M. K. ACS Catal. 2015, 5, 776.
[89] Yoshikai, N.; Matsuda, H.; Nakamura, E. J. Am. Chem. Soc. 2009, 131, 9590.
[90] Macgregor, S. A.; McKay, D.; Panetier, J. A.; Whittlesey, M. K. Dalton Trans. 2013, 42, 7386.
[91] Jaiswal, A. K.; Goh, K. K. K.; Sung, S.; Young, R. D. Org. Lett. 2017, 19, 1934.
[92] Jia, X.; Guo, P.; Duan, J.; Shu, X. Chem. Sci. 2018, 9, 640.
[93] Honda, K.; Harris, T. V.; Hatanaka, M.; Morokuma, K.; Mikami K.; Chem.-Eur. J. 2016, 22, 8796.
[94] Erickson, L. W.; Lucas, E. L.; Tollefson, E. J.; Jarvo, E. R. J. Am. Chem. Soc. 2016, 138, 14006.
[95] Xu, Z. Y.; Yang, Y. N.; Jiang, J. L.; Fu, Y. Organometallics 2018, 37, 1114.
[96] Zell, T.; Schaub, T.; Radacki, K.; Radius, U. Dalton Trans. 2011, 40, 1852.
[97] Ichitsuka, T.; Fujita, T.; Arita, T.; Ichikawa, J. Angew. Chem., Int. Ed. 2014, 53, 7564.
[98] Ichitsuka, T.; Fujita, T.; Ichikawa, J. ACS Catal. 2015, 5, 5947.
[99] Zhang, X. M.; Liu, Y. X.; Chen, G.; Pei, G. J.; Bi, S. W. Organometallics 2017, 36, 3739.
[100] Chen, W. J.; Xu, R. N.; Lin, W. M.; Sun, X. J.; Wang, B.; Wu, Q. H.; Huang, X. Front. Chem. 2018, 6, 319.
/
〈 |
|
〉 |