Chinese Journal of Organic Chemistry >
Recent Progress in Beckmann Rearrangement
Received date: 2018-09-26
Revised date: 2018-11-06
Online published: 2018-12-17
Supported by
Project supported by the Science and Technology Development Project in University of Shandong Province (No.J18KA102),the Natural Science Foundation of Shandong Province of China (No.ZR201807060818).
Amide motifs are prevalent structures found in natural products, pharmaceuticals, and bioactive compounds. Amide bond formations are the most important transformations in organic chemistry. Beckmann rearrangement is a significant method for the synthesis of primary and secondary amides. Recently, diversified new catalytic protocols were developed, including one-pot reaction from the corresponding aldehydes and ketones, or even from alcohols. The progress and applications of Beckmann rearrangement in recent five years are reviewed.
Key words: Beckmann rearrangement; amides; synthesis; oximes
Zhang Jian , Liu Yuanyuanb , Feng Weichunc , Wu Yumin . Recent Progress in Beckmann Rearrangement[J]. Chinese Journal of Organic Chemistry, 2019 , 39(4) : 961 -973 . DOI: 10.6023/cjoc201809031
[1] (a) Greenberg, A.; Breneman, C. M.; Liebman, J. F. The Amide Linkage:Structural Significance in Chemistry, Biochemistry and Materials Science, 1st ed., Wiley, New York, 2000.
(b) Huang, P.-Q. Acta Chim. Sinica 2018, 76, 357(in Chinese).(黄培强, 化学学报, 2018, 76, 357.)
[2] (a) Valeur, E.; Bradley, M. Chem. Soc. Rev. 2009, 38, 606.
(b) Li, Z.; Gao, B.; Huang, H. Chin. J. Org. Chem. 2018, 38, 1431(in Chinese).(李哲健, 高宝, 黄汉民, 有机化学, 2018, 38, 1431.)
[3] (a) Beckmann, E. Ber. Dtsch. Chem. Ges. 1886, 19, 988.
(b) Gawley, R. E. Org. React. 1988, 35, 1.
[4] Li, Q.; Yan, L. Y.; Xia, D.; Shen, Y. C. Chin. J. Org. Chem. 2011, 31, 2034(in Chinese).(李倩, 严罗一, 夏定, 申永存, 有机化学, 2011, 31, 2034.)
[5] Chandrasekhar, S. Comprehensive Organic Synthesis Ⅱ, 2nd ed., Elsevier, Amsterdam, Vol. 7, 2014, pp. 770~800.
[6] Crochet, P.; Cadierno, V. Chem. Commun. 2015, 51, 2495.
[7] Li, F.; Qu, P.; Ma, J.; Zou, X.; Sun C. ChemCatChem 2013, 5, 2178.
[8] Xu, L.; Li, N. N.; Peng, H.-G.; Wu, P. ChemCatChem 2013, 5, 2462.
[9] Ali, M. A.; Punniyamurthy, T. Adv. Synth. Catal. 2010, 352, 288.
[10] Sharma, S. K.; Bishopp, S. D.; Allen, C. L.; Lawrence, R.; Bamford, M. J.; Lapkin, A. A.; Plucinski, P.; Watson, R. J.; Williams, J. M. J. Tetrahedron Lett. 2011, 52, 4252.
[11] (a) Jang, W.; Kim, S. E.; Yang, C. M.; Yoon, S.; Park, M.; Lee, J.; Kim, Y.; Kim, M. Catal. Commun. 2015, 60, 120.
(b) Yao, W.; Yu, J.; Huang, X.; Zhang, B. Chem. J. Chin. Univ. 2018, 39, 926(in Chinese).(姚武冰, 虞姜姜, 黄相韵, 张斌, 高等学校化学学报, 2018, 39, 926.)
[12] Das, R.; Chakraborty, D. Catal. Commun. 2012, 26, 48.
[13] Allen, C. L.; Lawrence, R.; Emmett, L.; Williams, J. M. J. Adv. Synth. Catal. 2011, 353, 3262.
[14] (a) Kumar, P.; Singh, A. K.; Pandey, R.; Pandey, D. S. J. Organomet. Chem. 2011, 696, 3454.
(b) Prabhu, R. N.; Ramesh, R. RSC Adv. 2012, 2, 4515.
[15] García-Álvarez, R.; Díaz-Álvarez, A. E.; Borge, J.; Crochet, P.; Cadierno, V. Organometallics 2012, 31, 6482.
[16] García-Álvarez, R.; Díaz-Álvarez, A. E.; Crochet, P.; Cadierno, V. RSC Adv. 2013, 3, 5889.
[17] García-Álvarez, R.; Zablocka, M.; Crochet, P.; Duhayon, C.; Majoral, J. P.; Cadierno, V. Green Chem. 2013, 15, 2447.
[18] Francos, J.; Menendez-Rodriguez, L.; Tomas-Mendivil, E.; Crochet, P.; Cadierno, V. RSC Adv. 2016, 6, 39044.
[19] Gonzalez-Liste, P. J.; Cadierno, V.; García-Garrido, S. E. ACS Sustainable Chem. Eng. 2015, 3, 3004.
[20] Yang, F.-L.; Zhu, X.; Rao, D.-K.; Cao, X.-N.; Li, K.; Xu, Y.; Hao, X.-Q.; Song, M.-P. RSC Adv. 2016, 6, 37093.
[21] Gowda, R. R.; Chakraborty, D. Eur. J. Org. Chem. 2011, 2226.
[22] Das, R.; Chakraborty, D. Catal. Commun. 2012, 26, 48.
[23] Mahajan, S.; Sharma, B.; Kapoor, K. K. Tetrahedron Lett. 2015, 56, 1915.
[24] Jefferies, L. R.; Weber, S. R.; Cook, S. P. Synlett 2015, 26, 331.
[25] Raju, G.; Guguloth, V.; Satyanarayana, B. RSC Adv. 2016, 6, 45036.
[26] Waskow, B.; Mano, R. A.; Giacomini, R. X.; Oliveira, D. H.; Schumacher, R. F.; Wilhelm, E. A.; Luchese, C.; Savegnag, L.; Jacob, R. G. Tetrahedron Lett. 2016, 57, 5575.
[27] Anuradha, K. S.; Layek, S.; Pathak, D. D. J. Mol. Struct. 2017, 1130, 368.
[28] Saidulu, G.; Anand, N.; Rao, K. S. R.; Burri, A.; Park, S.-E.; Burri, D. R. Catal Lett. 2011, 141, 1865.
[29] Ganguly, N. C.; Roy, S.; Mondal, P. Tetrahedron Lett. 2012, 53, 1413.
[30] Kurhe, D. K., Jayaram, R. V. Catal. Commun. 2014, 57, 69.
[31] Martínez-Asencio, A.; Yus, M.; Ramón, D. J. Tetrahedron Lett. 2012, 68, 3948.
[32] Tambara, K.; Pantos, G. D. Org. Biomol. Chem. 2013, 11, 2466.
[33] Menéndez-Rodríguez, L.; Tomás-Mendivil, E.; Francos, J.; Nájera, C.; Crochet, P.; Cadierno, V. Catal. Sci. Technol. 2015, 5, 3754.
[34] Kiely-Collins, H. J.; Sechi, I.; Brennan, P. E.; McLaughlin, M. G. Chem. Commun. 2018, 54, 654.
[35] Xie, F.; Du, C.; Pang, Y.; Lian, X.; Xue, C.; Chen, Y.; Wang, X.; Cheng, M.; Guo, C.; Lin, B.; Liu, Y. Tetrahedron Lett. 2015, 57, 5820.
[36] Rancan, E.; Aricò, F.; Quartarone, G.; Ronchin, L.; Tundo, P.; Vavasori, A. Catal. Commun. 2014, 54, 11.
[37] Kalkhambkar, R. G.; Savanur, H. M. RSC Adv. 2015, 5, 60106.
[38] Umanadh, Y.; Reddy, N. S.; Mukkanti, K.; Omprakash, G. Asian J. Chem. 2015, 27, 1209.
[39] Wang, Y.; Du, Y.; He, J.; Zhang, Y. Green Chem. 2018, 20, 3318.
[40] Oishi, R.; Segi, K.; Hamamotob, H.; Nakamuraa, A.; Maegawa, T.; Miki, Y. Synlett 2018, 29, 1465.
[41] Mo, X.; Morgan, T. D. R.; Ang, H. T.; Hall, D. G. J. Am. Chem. Soc. 2018, 140, 5264.
[42] Kuo, C.-W.; Hsieh, M.-T.; Gao, S.; Shao, Y.-M.; Yao, C.-F.; Shia, K.-S. Molecules 2012, 17, 13662.
[43] Lachia, M.; Richard, F.; Bigler, R.; Kolleth-Krieger, A.; Dieckmann, M.; Lumbroso, A.; Karadeniz, U.; Catak, S.; Mesmaeker, A. D. Tetrahedron Lett. 2018, 59, 1896.
[44] Yan, Z.; Xu, Y.; Tian, W. Tetrahedron Lett. 2014, 55, 7186.
[45] Gao, P.; Bai, Z. J. Chin. J. Chem. 2017, 35, 1673.
[46] Gao, Y.; Liu, J.; Li, Z.; Guo, T.; Xu, S.; Zhu, H.; Wei, F.; Chen, S.; Gebru, H.; Guo, K. J. Org. Chem. 2018, 83, 2040.
[47] (a) An, N.; Tian, B.-X.; Pi, H.-J.; Eriksson, L. A.; Deng, W.-P. J. Org. Chem. 2013, 78, 4297.
(b) Tian, B.-X.; An, N.; Deng, W.-P.; Eriksson, L. A. J. Org. Chem. 2013, 78, 6782.
[48] Mahajan, P. S.; Humne, V. T.; Tanpure, S. D.; Mhaske, S. B. Org. Lett. 2016, 18, 3450.
[49] Peng, H.; Wang, D. R.; Xu, L.; Wu, P. Chin. J. Cata. 2013, 34, 2057.
[50] Jain, P. U.; Samant, S. D. ChemistrySelect 2018, 3, 1967.
[51] Ramesh, K.; Murthy, S. N.; Karnakar, K.; Reddy, K. H. V.; Nageswar, Y. V. D. Vijay, M.; Devi, B. L. A. P.; Prasad, R. B. N. Tetrahedron Lett. 2012, 53. 2636.
[52] Mao, D.; Long, Z.; Zhou, Y.; Li, J.; Wang, X.; Wang, J. RSC Adv. 2014, 4, 15635.
[53] Kaur, G.; Rajput, J. K.; Arora, P.; Devi, N. Tetrahedron Lett. 2014, 55, 1136.
[54] Hadimani, M. B.; Mukherjee, R.; Banerjee, R.; Shoman, M. E.; Aly, O. M.; King, S. B. Tetrahedron Lett. 2015, 56, 5870.
[55] Allam, B. K.; Singh, K. N. Tetrahedron Lett. 2011, 52, 5851.
[56] Datta, B.; Pasha, M. A. Bull. Korean Chem. Soc. 2012, 33, 2129.
[57] Kaur, S.; Kumar, M.; Bhalla, V. Chem. Commun. 2015, 51, 4085.
[58] Zhang, J. S.; Riaud, A.; Wang, K.; Lu, Y. C.; Luo, G. S. Catal Lett. 2014, 144, 151.
[59] Fernandez-Stefanuto, V.; Verdia, P.; Tojo, E. New J. Chem. 2017, 41, 12830.
[60] Khayyat, S. A.; Selvin, R.; Umar, A. J. Nanosci. Nanotechnol. 2017, 17, 2170.
[61] Potter, M. E.; O'Malley, A. J.; Chapman, S.; Kezina, J.; Newland, S. H.; Silverwood, I. P.; Mukhopadhyay, S.; Carravetta, M.; Mezza, T. M.; Parker, S. F.; Catlow, C. R. A.; Raja, R. ACS Catal. 2017, 7, 2926.
[62] Chu, Y.; Li, G.; Huang, L.; Yi, X.; Xia, H.; Zheng, A.; Deng, F. Catal. Sci. Technol. 2017, 7, 2512.
[63] Zhang, J. S.; Wang, K.; Zhang, C. Y.; Luo, G. S. Chem. Eng. Process. 2016, 110, 44.
[64] Ikushima, Y.; Hatakeda, K.; Sato, O.; Yokoyama, T.; Arai, M. J. Am. Chem. Soc. 2000, 122, 1908.
[65] Du, C.; Zhang, J.; Luo, G. AIChE J. 2018, 64, 571.
[66] Shin, J. Y.; Jung, D. J.; Lee, S.-G. ACS Catal. 2013, 3, 525.
[67] Wang, H.; Jia, L.; Hu R.; Gao, M.; Wang, Y. Chin. J. Catal. 2017, 38, 58.
[68] Li, H.; Qin, J.; Yang, Z.; Guan, X.; Zhang, L.; Liao, P.; Li, X. Chem. Commun. 2015, 51, 8637.
[69] Yu, M.; Zhang, Q.; Wang, J.; Huang, P.; Yan, P.; Zhang, R.; Dong, D. J. Chem. Sci. 2016, 128, 951.
[70] Zhang, X.; Huang, R.; Marrot, J.; Coeffard, V.; Xiong, Y. Tetrahedron 2015, 71, 700.
[71] Mercalli, V.; Massarotti, A.; Varese, M.; Giustiniano, M.; Meneghetti, F.; Novellino, E.; Tron, G. C. J. Org. Chem. 2015, 80, 9652.
[72] Lindsay, A. C.; Sperry, J. Tetrahedron 2017, 73, 4355.
[73] Zhi, X.; Zhang, Y.; Huang, J.; Xu, H. Sci. Rep. 2017, 7, 3917.
[74] Mphahlele, M. J., Mmonwa, M. M.; Choong, Y. S. Molecules 2017, 22, 1099.
/
〈 |
|
〉 |