Chinese Journal of Organic Chemistry >
Synthesis of α-Halo Amides via Zinc-Mediated Tandem Oxidation/Halogenation of Ynamides
Received date: 2018-11-05
Revised date: 2018-11-29
Online published: 2018-12-17
Supported by
Project supported by the Key R&D Program of Zhejiang Province (No.2017C03002) and the National Natural Science Foundation of China (No.21572186).
α-Haloamides are a very important class of carbonyl compounds, and widely exist in a range of natural products and bioactive molecules. Herein, the realization of the tandem oxidation/halogenation of ynamides by employing the zinc halide as both the catalyst and the halogen source is described, thus avoiding the use of other external halogenating reagents. This method allows the practical synthesis of a variety of valuable α-haloamides in moderate to good yields.
Key words: α-halo amides; oxidation; ynamide; tandem reaction
Zhu Jianrong , Ren Xiaojuan , Tang Feiyu , Pan Fei , Ye Longwu . Synthesis of α-Halo Amides via Zinc-Mediated Tandem Oxidation/Halogenation of Ynamides[J]. Chinese Journal of Organic Chemistry, 2019 , 39(4) : 1102 -1108 . DOI: 10.6023/cjoc201811007
[1] (a) Gribble, G. W. Naturally Occurring Organohalogen Compounds:A Comprehensive Update, Springer-Verlag, Wienheim, Germany, 2010.
(b) Gribble, G. W. Naturally Occurring Organohalogen Compounds:A Comprehensive Survey, Springer-Verlag, Wienheim, Germany, 1996.
[2] For recent selected reviews, see:(a) Chung, W.-J.; Vanderwal, C. D. Acc. Chem. Res. 2014, 47, 718.
(b) Chemler, S. R.; Bovino, M. T. ACS Catal. 2013, 3, 1076.
(c) Chelucci, G. Chem. Rev. 2012, 112, 1344.
(d) Aubin, Y.; Fischmeister, C.; Thomas, C. M.; Renaud, J.-L. Chem. Soc. Rev. 2010, 39, 4130.
(e) Roman, B. I.; De Kimpe, N.; Stevens, C. V. Chem. Rev. 2010, 110, 5914.
[3] For reviews on catalytic intermolecular N-oxide oxidation of alkynes, see:(a) Zheng, Z.; Wang, Z.; Wang, Y.; Zhang, L. Chem. Soc. Rev. 2016, 45, 4448.
(b) Zhou, B.; Li, L.; Ye, L.-W. Synlett 2016, 493.
(c) Qian, D.; Zhang, J. Chem. Soc. Rev. 2015, 44, 677.
(d) Yeom, H.-S.; Shin, S. Acc. Chem. Res. 2014, 47, 966.
(e) Zhang, L. Acc. Chem. Res. 2014, 47, 877.
(f) Xiao, J.; Li, X. Angew. Chem., Int. Ed. 2011, 50, 7226.
[4] For recent selected examples, see:(a) Yang, J.-M.; Zhao, Y.-T.; Li, Z.-Q.; Gu, X.-S.; Zhu, S.-F.; Zhou, Q.-L. ACS Catal. 2018, 8, 7351.
(b) Zhao, J.; Xu, W.; Xie, X.; Sun, N.; Li, X.; Liu, Y. Org. Lett. 2018, 20, 5461.
(c) Li, J.; Xing, H.-W.; Yang, F.; Chen, Z.-S.; Ji, K. Org. Lett. 2018, 20, 4622.
(d) Hamada, N.; Yamaguchi, A.; Inuki, S.; Oishi, S.; Ohno, H. Org. Lett. 2018, 20, 4401.
(e) M. Lin, L. Zhu, J. Xia, Y. Yu, J. Chen, Z. Mao, X. Huang, Adv. Synth. Catal. 2018, 360, 2280.
(f) Xu, Z.; Chen, H.; Wang, Z.; Ying, A.; Zhang, L. J. Am. Chem. Soc. 2016, 138, 5515.
(g) Zeng, X.; Liu, S.; Shi, Z.; Liu, G.; Xu, B. Angew. Chem., Int. Ed. 2016, 55, 10032.
(h) Zhang, Y.; Xue, Y.; Li, G.; Yuan, H.; Luo, T. Chem. Sci. 2016, 7, 5530.
(i) Wang, Y.; Zheng, Z.; Zhang, L. J. Am. Chem. Soc. 2015, 137, 5316.
(j) Chen, H.; Zhang, L. Angew. Chem., Int. Ed. 2015, 54, 11775.
(k) Ji, K.; Zheng, Z.; Wang, Z.; Zhang, L. Angew. Chem., Int. Ed. 2015, 54, 1245.
(l) Chen, M.; Chen, Y.; Sun, N.; Zhao, J.; Liu, Y.; Li, Y. Angew. Chem., Int. Ed. 2015, 54, 1200.
(m) Zheng, Z.; Zhang, L. Org. Chem. Front. 2015, 2, 1556.
(n) Ji, K.; Liu, X.; Du, B.; Yang, F.; Gao, J. Chem. Commun. 2015, 51, 10318.
(o) Qian, D.; Hu, H.; Liu, F.; Tang, B.; Ye, W.; Wang, Y.; Zhang, J. Angew. Chem., Int. Ed. 2014, 53, 13751.
[5] (a) Kim, S. W.; Um, T.-W.; Shin, S. Chem. Commun. 2017, 53, 2733.
(b) Li, L.; Zhou, B.; Ye, L.-W. Chin. J. Org. Chem. 2015, 35, 655(in Chinese). (李龙, 周波, 叶龙武, 有机化学, 2015, 35, 655.)
(c) Nösel, P.; dos Santos Comprido, L. N.; Lauterbach, T.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. J. Am. Chem. Soc. 2013, 135, 15662.
(d) Wang, K.-B.; Ran, R.-Q.; Xiu, S.-D.; Li, C.-Y. Org. Lett. 2013, 15, 2374.
(e) Yang, L.-Q.; Wang, K.-B.; Li, C.-Y. Eur. J. Org. Chem. 2013, 2775.
(f) Dateer, R. B.; Pati, K.; Liu, R.-S. Chem. Commun. 2012, 48, 7200.
(g) Mukherjee, A.; Dateer, R. B.; Chaudhuri, R.; Bhunia, S.; Karad, S. N.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 15372.
(h) Vasu, D.; Hung, H.-H.; Bhunia, S.; Gawade, S. A.; Das, A.; Liu, R.-S. Angew. Chem., Int. Ed. 2011, 50, 6911.
[6] (a) Wang, C.-M.; Qi, L.-J.; Sun, Q.; Zhou, B.; Zhang, Z.-X.; Shi, Z.-F.; Lin, S.-C.; Lu, X.; Gong, L.; Ye, L.-W. Green Chem. 2018, 20, 3271.
(b) Shen, W.-B.; Sun, Q.; Li, L.; Liu, X.; Zhou, B.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Nat. Commun. 2017, 8, 1748.
(c) Pan, F.; Li, X.-L.; Chen, X.-M.; Shu, C.; Ruan, P.-P.; Shen, C.-H.; Lu, X.; Ye, L.-W. ACS Catal. 2016, 6, 6055.
(d) Ruan, P.-P.; Shen, C.-H.; Li, L.; Liu, C.-Y.; Ye, L.-W. Org. Chem. Front. 2016, 3, 989.
(e) Li, L.; Zhou, B.; Wang, Y.-H.; Shu, C.; Pan, Y.-F.; Lu, X.; Ye, L.-W. Angew. Chem., Int. Ed. 2015, 54, 8245.
(f) Li, L.; Shu, C.; Zhou, B.; Yu, Y.-F.; Xiao, X.-Y.; Ye, L.-W. Chem. Sci. 2014, 5, 4057.
(g) Pan, F.; Liu, S.; Shu, C.; Lin, R.-K.; Yu, Y.-F.; Zhou, J.-M.; Ye, L.-W. Chem. Commun. 2014, 50, 10726.
[7] For recent reviews on ynamide reactivity, see:(a) Pan, F.; Shu, C.; Ye, L.-W. Org. Biomol. Chem. 2016, 14, 9456.
(b) Evano, G.; Theunissen, C.; Lecomte, M. Aldrichim. Acta 2015, 48, 59.
(c) Wang, X.-N.; Yeom, H.-S.; Fang, L.-C.; He, S.; Ma, Z.-X.; Kedrowski, B. L.; Hsung, R. P. Acc. Chem. Res. 2014, 47, 560.
(d) DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064.
(e) Evano, G.; Coste, A.; Jouvin, K. Angew. Chem., Int. Ed. 2010, 49, 2840.
[8] For selected examples from our group, see:(a) Zhou, B.; Li, L.; Zhu, X.-Q.; Yan, J.-Z.; Guo, Y.-L.; Ye, L.-W. Angew. Chem., Int. Ed. 2017, 56, 4015.
(b) Shen, W.-B.; Xiao, X.-Y.; Sun, Q.; Zhou, B.; Zhu, X.-Q.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Angew. Chem., Int. Ed. 2017, 56, 605.
(c) Li, L.; Chen, X.-M.; Wang, Z.-S.; Zhou, B.; Liu, X.; Lu, X.; Ye, L.-W. ACS Catal. 2017, 7, 4004.
(d) Shu, C.; Wang, Y.-H.; Shen, C.-H.; Ruan, P.-P.; Lu, X.; Ye, L.-W. Org. Lett. 2016, 18, 3254.
(e) Pan, Y.; Chen, G.-W.; Shen, C.-H.; He, W.; Ye, L.-W. Org. Chem. Front. 2016, 3, 491.
(f) Shu, C.; Wang, Y.-H.; Zhou, B.; Li, X.-L.; Ping, Y.-F.; Lu, X.; Ye, L.-W. J. Am. Chem. Soc. 2015, 137, 9567.
(g) Zhou, A.-H.; He, Q.; Shu, C.; Yu, Y.-F.; Liu, S.; Zhao, T.; Zhang, W.; Lu, X.; Ye, L.-W. Chem. Sci. 2015, 6, 1265.
[9] Pan, F.; Shu, C.; Ping, Y.-F.; Pan, Y.-F.; Ruan, P.-P.; Fei, Q.-R.; Ye, L.-W. J. Org. Chem. 2015, 80, 10009.
[10] (a) Wang, Y.; Ji, K.; Lan, S.; Zhang, L. Angew. Chem., Int. Ed. 2012, 51, 1915.
(b) Henrion, G.; Chava, T. E. J.; Le Goff, X.; Gagosz, F. Angew. Chem., Int. Ed. 2013, 52, 6277.
[11] For recent selected examples, see:(a) Liu, Y.; Dong, W. Chin. J. Chem. 2017, 35, 1491.
(b) Xie, L.; Wu, Y.; Yi, W.; Zhu, L.; Xiang, J.; He, W. J. Org. Chem. 2013, 78, 9190.
/
〈 |
|
〉 |