ARTICLE

Synthesis of Paclitaxel Side Chain via Multi-Component Reaction and Its Application to the Synthesis of Paclitaxel Analogues

  • Sheng Jiajun ,
  • Yu Ya'nan ,
  • Wang Xin ,
  • Qian Yu ,
  • Fu Liwu ,
  • Zhao Yun ,
  • Ma Mingliang ,
  • Hu Wenhao
Expand
  • a Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062;
    b School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006;
    c Cancer Center, Sun Yat-sen University, Guangzhou 510060

Received date: 2018-07-24

  Revised date: 2018-12-17

  Online published: 2018-12-21

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21572067, 21332003).

Abstract

Under the catalysis of Cu(OTf)2, a hydroxy ylide trapping based multi-component reaction using water, diazoacetates, aromatic aldehydes and aromatic amines was successfully carried out to construct α-hydroxy-β-amino acid ester skeleton in one step. The taxol oxazolidine-type side chains were efficiently synthesized after further chemical transformations. Moreover, 14 taxane derivatives were synthesized through esterification of obtained side chains and 7-O-(triethylsilyl) baccatin Ⅲ or 7,10-dimethoxy-10-beacetyl baccatin Ⅲ, and several novel compounds with excellent activity were discovered in the test of anti-tumor activity. In this paper, combining the methodology and application of multi-component reaction, a highly efficient method for synthesizing paclitaxel side chain derivatives was developed, which was applied into the semi-synthesis of paclitaxel analogues. This research provided a new approach to the study of structure-activity relationship and had potential application value.

Cite this article

Sheng Jiajun , Yu Ya'nan , Wang Xin , Qian Yu , Fu Liwu , Zhao Yun , Ma Mingliang , Hu Wenhao . Synthesis of Paclitaxel Side Chain via Multi-Component Reaction and Its Application to the Synthesis of Paclitaxel Analogues[J]. Chinese Journal of Organic Chemistry, 2019 , 39(2) : 377 -389 . DOI: 10.6023/cjoc201806031

References

[1] (a) Yu, Y.; Wang, J. F.; Wang, C. Y.; Li, Y. X. Chin. J. Mod. Appl. Pharm. 2012, 29, 16(in Chinese). (于跃, 王军飞, 王长云, 李英霞, 中国现代应用药学, 2012, 29, 16.)
(b) Sheng, J. J. M.S. Thesis, East China Normal University, Shanghai, 2018(in Chinese). (盛家骏, 硕士论文, 华东师范大学, 上海, 2018.)
[2] Rowinsky, E. K. Annu. Rev. Med. 1997, 48, 353-374.
[3] Shi, Q. W. Chin. Tradit. Herb. Drugs 2011, 42, 1878(in Chinese). (史清文, 中草药, 2011, 42, 1878.)
[4] (a) Nicolaou, K. C.; Yang, Z.; Liu, J. J.; Ueno, H.; Nantermet, P. G.; Guy, R. K.; Claiborne, C. F.; Renaud, J.; Couladouros, E. A.; Paulvannan, K.; Sorensen, E. J. Nature 1994, 367, 630.
(b) Nicolaou, K. C.; Dai, W. M.; Guy, R. K. Angew. Chem., Int. Ed. 1994, 33, 15.
(c) Holton, R. A.; Somoza, C.; Kim, H. B.; Liang, F.; Biediger, R. J.; Boatman, P. D.; Shindo, M.; Smith, C. C.; Kim, S.; Nadizadeh, H.; Suzuki, Y.; Tao, C.; Vu, P.; Tang, S.; Zhang, P.; Murthi, K. K.; Gentile, L. N.; Liu, J. H. J. Am. Chem. Soc. 1994, 116, 1597.
(d) Danishefsky, S. J.; Masters, J. J.; Young, W. B.; Link, J. T.; Snyder, L. B.; Magee, T. V.; Jung, D. K.; Isaacs, R. C. A.; Bornmann, W. G.; Alaimo, C. A.; Coburn, C. A.; Grandi, M. J. D. J. Am. Chem. Soc. 1996, 118, 2843.
(e) Wender, P. A.; Badham, N. F.; Conway, S. P.; Floreancig, P. E.; Glass, T. E.; Houze, J. B.; Crauss, N. E.; Lee, D.; Marquess, D. G.; McGrane, P. L.; Meng, W.; Natchus, M. G.; Shuker, A. J.; Sutton, J. C.; Taylor, R. E. J. Am. Chem. Soc. 1997, 119, 2755.
(f) Morihira, K.; Hara, R.; Kawahara, S.; Nishimori, T.; Nakamura, N.; Kusama, H.; Kuwajima, I. J. Am. Chem. Soc. 1998, 120, 12980.
(g) Mukaiyama, T.; Shiina, I.; Iwadare, H.; Saitoh, M.; Nishimura, T.; Ohkawa, N.; Sakoh, H.; Nishimura,K.; Tani, Y.; Hasegawa, M.; Yamada, K.; Saitoh, K. Chem.-Eur. J. 1999, 5, 121.
(h) Doi, T.; Fuse S.; Miyamoto, S.; Nakai, K.; Sasuga, D.; Takahashi, T. Chem.-Asian J. 2006, 1, 370.
[5] (a) Guenard, D.; Gueritte-Voegelein, F.; Potier, P. Acc. Chem Res. 1993, 26, 160.
(b) Ojima, I.; Habus, I.; Zhao, M.; Zucco, M.; Park, Y. H.; Sun, C. M.; Brigaud, T. Tetrahedron 1992, 34, 6985.
[6] (a) Denis, J. N.; Greene, A. E.; Serra, A. A.; Luche, M. J. J. Org. Chem. 1986,51, 46.
(b) Deng, L.; Jacobson, E. N. J. Org. Chem. 1992, 57, 4320.
(c) Li, G.; Chang, H. T.; Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 1996, 35, 451.
[7] Sharpless, K. B.; Wang, Z. M.; Kolb, H. C. J. Org. Chem. 1994, 59, 5104.
[8] (a) Liu, W.; Lv, B.; Gong, L. Angew. Chem., Int. Ed. 2009, 48, 6503.
(b) Bergmeier, S. C. Tetrahedron 2000, 56, 2561.
(c) Larrow, J. F.; Schaus, S. E.; Jacobsen, E. N. J. Am. Chem. Soc. 1996, 118, 7420.
(d) Olofsson, B.; Somfai, P. J. Org. Chem. 2002, 67, 8574.
(e) Hu, X. E. Tetrahedron 2004, 60, 2701.
[9] (a) Qian, Y.; Xu, X. F.; Jiang, L. Q.; Prajapati, D.; Hu, W. H. J. Org. Chem. 2010, 75, 7483.
(b) Guo, Z. Q.; Shi, T. D.; Jiang, J.; Yang, L. P.; Hu, W. H. Org. Biomol. Chem. 2009, 7, 5028.
[10] (a) Torssell, S.; Kienle, M.; Somfai, P. Angew. Chem., Int. Ed. 2005, 44, 3096.
(b) Torssell, S.; Somfai, P. Adv. Synth. Catal. 2006, 348, 2421.
(c) Sheng, J. J.; Chang, H.; Qian, Y.; Ma, M. L.; Hu, W. H. Tetrahedron Lett. 2018, 59, 2141.
[11] Xu, X. F.; Guo, X.; Han, X. C.; Yang, L. P.; Hu, W. H. Org. Chem. Front. 2014, 1, 181.
[12] Verkade, J.; Van Hemert, L.; Quaedflieg, P.; Alsters, P.; Van Delft, F.; Rutjes, F. Tetrahedron Lett. 2006, 47, 8109. Li, Q. F.; Lin, H. X.; Cui, Y. M.; Xu, P. P. Eur. J. Med. Chem. 2015, 104, 97.

Outlines

/