Reviews

Study on Halogen Bonding of Organofluorine Compounds in China

  • Liu Chuan-Zhi ,
  • Wang Hui ,
  • Zhang Dan-Wei ,
  • Zhao Xin ,
  • Li Zhan-Ting
Expand
  • a Department of Chemistry, Fudan University, Shanghai 200438;
    b Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2018-12-14

  Revised date: 2018-12-19

  Online published: 2018-12-21

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21772026, 21432004).

Abstract

This review summarizes studies on halogen bonding of fluorine-containing alkyl and aryl iodides in China. From 1987 to 1993, Chen et al. found that there existed donor-acceptor interaction between fluorinated organic (di)iodides, as Lewis acids, and organic Lewis bases such as amines and ethers, which represented early important advances for the research on the non-covalent force currently called as halogen bonding. From 2001 to now, several groups have used halogen bonding as driving force to conduct researches on crystal engineering. In this catogery, Zhu et al. investigated the one-dimensional self-assembly between perfluoro-α,?-diioodalkanes and amines, ethers, and hexamethylphosphamide. Jin et al. studied the complexation between fluorinated aryl iodides and various N-heterocycles, whereas Zhang and Li et al. constructed supramolecular double and quadruple helices from one or two molecular components. Jin et al. conducted extensive studies on C—I…p halogen bonding and its applications in crystal engineering. Wang and Wan et al. utilized halogen bonding to induce trianglular aromatic molecules to co-assemble into two-dimensional honeycomb arrays on surface, whereas Wang et al. utilized halogen bond to induce mono-layer and layer-by-layer self-assembly of two polymers or organic molecules. Zhao and Li et al. developed the applications of halogen bonding in solution-phase multi-site molecular recognition of foldamer receptors for ICF2-incorporated tri-armed guests. Hu, Gong, Liao et al. utilized halogen bonding to improve the material properties of a variety of organic aromatic molecules. Several groups have also used halogen bonding to increase the selectivity of a number of organic reactions. Representative examples are described, which highlight the utility of halogen bonding.

Cite this article

Liu Chuan-Zhi , Wang Hui , Zhang Dan-Wei , Zhao Xin , Li Zhan-Ting . Study on Halogen Bonding of Organofluorine Compounds in China[J]. Chinese Journal of Organic Chemistry, 2019 , 39(1) : 28 -37 . DOI: 10.6023/cjoc201812026

References

[1] Needham, P. Studies in History and Philosophy of Science 2013, 44, 51.
[2] Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals, 3rd, Ithaca, Cornell University Press, 1960.
[3] Guthrie, F. J. Chem. Soc. 1863, 16, 239.
[4] Hassel, O.; Hvoslef, J.; Vihovde, E. H.; Sörensen, N. A. Acta Chem. Scand. 1954, 8, 873.
[5] Dumas, J.-M.; Peurichard, H.; Gomel, M. J. Chem. Res., Synop. 1978, 2, 54.
[6] (a) Farina, A.; Meille, S. V.; Messina, M. T.; Metrangolo, P.; Resnati, G.; Vecchio, G. Angew. Chem., Int. Ed. 1999, 38, 2433.
(b) Metrangolo, P.; Resnati, G. Chem. Eur. J. 2001, 7, 2511.
[7] (a) Clark, T.; Hennemann, M.; Murray, J. S.; Politzer, P. J. Mol. Model. 2007, 13, 291.
(b) Politzer, P.; Lane, P.; Concha, M. C.; Ma, Y.; Murray, J. S. J. Mol. Model. 2007, 13, 305.
(c) Wang, H.; Wang, W.; Jin, W. J. Chem. Rev. 2016, 116, 5072.
[8] Desijaru, G. R.; Ho, P. S.; Kloo, L.; Legon, A. C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Pure Appl. Chem. 2013, 85, 1711.
[9] Cheetham, N. F.; Pullin, A. D. E. J. Chem. Soc., Chem. Commun. 1965, 418.
[10] Gutman, V. The Donor-Acceptor Approach to Molecular Interaction, Plenum Press, New York, 1978, p. 41.
[11] Chen, Q. Y.; Qiu, Z. M. J. Fluorine Chem. 1986, 31, 301.
[12] Chen, Q.-Y.; Qiu, Z.-M. J. Fluorine Chem. 1987, 35, 79.
[13] Chen, Q.-Y.; He, Y.-B.; Yang, Z.-Y. Chin. J. Org. Chem. 1988, 451(in Chinese). (陈庆云, 何亚波, 杨震宇, 有机化学, 1988, 451.)
[14] Chen, Q.-Y.; Li, Z.-T.; Zhou, C.-M. J. Chem. Soc., Perkin Trans. 1 1993, 2457.
[15] Mukherjee, A.; Tothadi, S.; Desiraju, G. R. Acc. Chem. Res. 2014, 47, 2514.
[16] Ding, X.-H.; Ou, C.-J.; Wang, S.; Xie, L.-H.; Lin, J.-Y.; Wang, J.-P.; Huang, W. CrystEngComm 2017, 19, 5504.
[17] Christopherson, J.-C.; Topic, F.; Barrett, C. J.; Friscic, T. Cryst. Growth Des. 2018, 18, 1245.
[18] (a) Ho, P. S. Top. Curr. Chem. 2015, 358, 241.
(b) Lu, Y.; Liu, Y.; Xu, Z.; Li, H.; Liu, H.; Zhu, W. Exp. Opin. Drug Discovery Dev. 2012, 7, 375.
[19] (a) Breugst, M.; von der Heiden, D.; Schmauck, J. Synthesis 2017, 49, 3224.
(b) Meyer, F.; Dubois, P. CrystEngComm 2013, 15, 3058.
[20] (a) Ding, H.; Lu, Y.; Wu, W.; Liu, H. Chem. Phys. 2014, 441, 30.
(b) Guo, X.; An, X.; Li, Q. J. Phys. Chem. A 2015, 119, 3518.
(c) Wang, Y.; Tong, J.; Wu, W.; Xu, Z.; Lu, Y. Int. J. Quantum Chem. 2015, 115, 884.
(d) Han, N.; Zeng, Y.; Sun, C.; Li, X.; Sun, Z.; Meng, L. J. Phys. Chem. A 2014, 118, 7058.
(e) Wu, W.; Lu, Y.; Liu, Y.; Peng, C.; Liu, H. Comput. Theor. Chem. 2014, 1029, 21.
[21] (a) Xiao, L.; Wu, Y.; Yu, Z.; Xu, Z.; Li, J.; Liu, Y.; Yao, J.; Fu, H. Chem.-Eur. J. 2018, 24, 1801.
(b) Li, D.; Yang, X.; Yan, D. ACS Appl. Mater. Interfaces 2018, 10, 34377.
(c) Wang, M.; Cheng, C.; Song, J.; Wang, J.; Zhou, X.; Xiang, H.; Liu, J. Chin. J. Chem. 2018, 36, 698.
[22] (a) Zhang, Q.; Xu, Z.; Zhu, W. J. Chem. Inf. Model. 2017, 57, 22.
(b) Lu, Y.; Shi, T.; Wang, Y.; Yang, H.; Yan, X.; Luo, X.; Jiang, H.; Zhu, We. J. Med. Chem. 2009, 52, 2854.
(c) Ren, J.; He, Y.; Chen, W.; Chen, T.; Wang, G.; Wang, Z.; Xu, Z.; Luo, X.; Zhu, W.; Jiang, H.; Shen, J.; Xu, Y. J. Med. Chem. 2014, 57, 3588.
[23] (a) Chan, Y.-C.; Yeung, Y.-Y. Angew. Chem., Int. Ed. 2018, 57, 3483.
(b) Jiang, S.; Zhang, L.; Cui, D.; Yao, Z.; Gao, B.; Lin, J.; Wei, D. Sci. Rep. 2016, 6, 34750.
(c) Guo, F.; Ye, L.; Li, A.; Yang, X.; Yang, C.; Yu, H. Tetrahedron Lett. 2016, 57, 1944.
[24] (a) Yao, Z.-F.; Wang, J.-Y.; Pei, J. Cryst. Growth Des. 2018, 18, 7.
(b) Chen, X.-L.; Zhang, Y.; Zhang, M.-Y.; Zeng, M.-H. Chin. J. Chem. 2017, 35, 927.
(c) Liu, S.-Y.; Zhang, J.-P.; Chen, X.-M. Cryst. Growth Des. 2017, 17, 1441.
(d) Li, B.; Zang, S.-Q.; Wang, L.-Y.; Mak, T. C. W. Coord. Chem. Rev. 2016, 308, 1.
(e) Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629.
[25] (a) Saha, S.; Mishra, M. K.; Reddy, C. M.; Desiraju, G. R. Acc. Chem. Res. 2018, 51, 2957.
(b) Liu, H.; Cheng, X.; Bian, Z.; Ye, K.; Zhang, H. Chin. Chem. Lett. 2018, 29, 1537.
(c) Wang, H.-H.; Liu, H.-Y.; Cheng, F.; Ali, A.; Shi, L.; Xiao, X.-Y.; Chang, C.-K. Chin. Chem. Lett. 2018, 29, 1404.
(d) Asghar, M. Adnan; Zhang, J.; Han, S.; Sun, Z.; Ji, C.; Zeb, A.; Luo, J. Chin. Chem. Lett. 2018, 29, 285.
(e) Li, T.; Wei, H.; Zhang, Z.; Zhao, Y.; Sui, Y.; Wang, X. Sci. China Chem. 2017, 60, 602.
(f) Bernstein, J.; Davis, R. E.; Shimoni, L.; Chang, N.-L. Angew. Chem., Int., Ed. Engl. 1995, 34, 1555.
(h) Desiraju, G. R. Angew. Chem., Int. Ed. 2007, 46, 8342.
[26] (a) Liu, Z.-Q.; Liu, Y.; Chen, Y.; Zhao, W.-Q.; Fang, W.-N. Chin. Chem. Lett. 2017, 28, 297.
(b) Chen, L.-Z.; Cao, X.-X. Chin. Chem. Lett. 2017, 28, 400.
(c) Wang, W.-H.; Gao, Q.; Li, A.-L.; Jia, Y.-Y.; Zhang, S.-Y.; Wang, J.-H.; Zhang, Y.-H.; Bu, X.-H. Chin. Chem. Lett. 2018, 29, 336.
(d) Xu, H.; Wu, P. Chin. J. Chem. 2017, 35, 836.
(e) Chen, X.-M.; Tong, M.-L. Acc. Chem. Res. 2007, 40, 162.
[27] (a) Meng, D.; Liang, H.; Chen, Q.; Shen, X. Chin. Chem. Lett. 2018, 29, 447.
(b) Luan, H.; Sun, H.; Xue, B.; Li, X. Chin. J. Org. Chem. 2017, 37, 1392(in Chinese). (栾化鑫, 孙宏建, 薛本静, 李晓燕, 有机化学, 2017, 37, 1392.)
(c) Zhang, W.; Chen, D.; Liu, X.; Huang, C.; Zhu, B. Chin. J. Org. Chem. 2017, 37, 474(in Chinese). (张文龙, 陈冬梅, 刘兴丽, 黄超, 朱必学, 有机化学, 2017, 37, 474.)
(d) Li, C.-P.; Du, M. Chem. Commun. 2011, 47, 5958.
[28] (a) Liu, C.-M.; Zhang, D.-Q.; Hao, X.; Zhu, D.-B. Sci. China Chem. 2017, 60, 358.
(b) Luo, Y.-S.; Chen, J.-L.; Zeng, X.-H.; Qiu, L.; He, L.-H.; Liu, S.-J.; Wen, H.-R. Chin. Chem. Lett. 2017, 28, 1027.
(c) Deng, C.-D.; Qiao, Y.-J.; Chen, Q.-D.; Shen, X.-H. Chin. Chem. Lett. 2017, 28, 19.
(d) Peng, R.; Li, M.; Li, D. Coord. Chem. Rev. 2010, 254, 1.
[29] (a) Aakeröy, C. B.; Spartz, C. L. Top. Curr. Chem. 2015, 358, 155.
(b) Berger, G.; Soubhye, J.; Meyer, F. Polym. Chem. 2015, 6, 3559.
(c) Pang, X.; Jin, W. J. Top. Curr. Chem. 2015, 359, 115.
[30] Voth, A. R.; Khuu, P.; Oishi, K.; Ho, P. S. Nat. Chem. 2009, 1, 74.
[31] Chu, Q.; Wang, Z.; Huang, Q.; Yan, C.; Zhu, S. J. Am. Chem. Soc. 2001, 123, 11069.
[32] (a) Chu, Q.; Wang, Z.; Huang, Q.; Yan, C.; Zhu, S. New J. Chem. 2003, 27, 1522.
(b) Zhu, S.; Xing, C.; Xu, W.; Li, Z. Tetrahedron Lett. 2004, 45, 777.
[33] Ji, B.; Wang, W.; Deng, D.; Zhang, Y. Cryst. Growth Des. 2011, 11, 3622.
[34] (a) Yan, D.; Bücar, D.-K.; Delori, A.; Patel, B.; Lloyd, G. O.; Jones, W.; Duan, X. Chem.-Eur. J. 2013, 19, 8213.
(b) Yan, D.; Yang, H.; Meng, Q.; Lin, H.; Wei, M. Adv. Funct. Mater. 2014, 24, 587.
(c) Lin, H.; Chang, X.; Yan, D.; Fang, W.-H.; Cui, G. Chem. Sci. 2017, 8, 2086.
(d) Yan, D.; Evans, D. G. Mater. Horiz. 2014, 1, 46.
(e) Li, S.; Lin, Y.; Yan, D. J. Mater. Chem. C 2016, 4, 2527.
(f) Fan, G.; Yan, D. Adv. Opt. Mater. 2016, 4, 2139.
(g) Yan, D. Chem.-Eur. J. 2015, 21, 4880.
[35] Pang, X.; Zhao, X. R.; Wang, H.; Sun, H.-L.; Jin, W. J. Cryst. Growth Des. 2013, 13, 3739
[36] Liu, P.; Li, Z.; Shi, B.; Liu, J.; Zhu, H.; Huang, F. Chem.-Eur. J. 2018, 24, 4264.
[37] Han, C.; Zhao, D.; Dong, S. Chem. Commun. 2018, 54, 13099.
[38] Politzer, P.; Murray, J. S.; Clark, T. Phys. Chem. Chem. Phys. 2010, 12, 7748.
[39] (a) Gao, H. Y.; Zhao, X. R.; Wang, H.; Pang, X.; Jin, W. J. Cryst. Growth Des. 2012, 12, 4377.
(b) Shen, Q. J.; Pang, X.; Zhao, X. R.; Gao, H. Y.; Sun, H.-L.; Jin, W. J. CrystEngComm 2012, 14, 5027.
(c) Gao, H.; Zhao, X.; Wang, H.; Pang, X.; Jin, W. Chin. J. Chem. 2013, 31, 1279.
[40] Liu, C.-Z.; Koppireddi, S.; Wang, H.; Zhang, D.-W.; Li, Z.-T. Angew. Chem., Int. Ed. 2019, 58, 226.
[41] (a) Yang, Y.; Wang, C. Chem. Soc. Rev. 2009, 38, 2576.
(b) Wang, D.; Wan, L.-J.; Bai, C.-L. Mater. Sci. Eng., R 2010, 70, 169.
(c) Jin, X.; Cramer, J. R.; Chen, Q.-W.; Liang, H.-L.; Shang, J.; Shao, X.; Chen, W.; Xu, G.-Q.; Gothelf, K. V.; Wu, K. Chin. Chem. Lett. 2017, 28, 525.
[42] (a) Borges, J.; Mano, J. F. Chem. Rev. 2014, 114, 8883.
(b) Xu, H.; Schönhoff, M.; Zhang, X. Small 2012, 8, 517.
[43] Zheng, Q.-N.; Liu, X.-H.; Chen, T.; Yan, H.-J.; Cook, T.; Wang, D.; Stang, P. S.; Wan, L.-J. J. Am. Chem. Soc. 2015, 137, 6128.
[44] (a) Yang, X.; Wang, F.; Chen, Q.; Wang, L.; Wang, Z. Chin. Sci. Bull. 2007, 52, 1856.
(b) Wang, F.; Ma, N.; Chen, Q.; Wang, W.; Wang, L. Langmuir 2007, 23, 9540.
[45] Beale, T. M.; Chudzinski, M. G.; Sarwar, M. G.; Taylor, M. S. Chem. Soc. Rev. 2013, 42, 1667.
[46] (a) Zhu, Y.-Y.; Wang, G.-T.; Wang, R.-X.; Li, Z.-T. Cryst. Growth Des. 2009, 9, 4778.
(b) You, L.-Y.; Chen, S.-G.; Zhao, X.; Liu, Y.; Lan, W.-Y.; Zhang, Y.; Lu, H.-J.; Cao, C.-Y.; Li, Z.-T. Angew. Chem., Int. Ed. 2012, 51, 1657.
(c) Sun, G.; Nie, C.; Zhao, X.; Li, Z. Chin. J. Org. Chem. 2017, 37, 1757(in Chinese) (孙广军, 聂承斌, 赵新, 黎占亭, 有机化学, 2017, 37, 1757.)
(d) Wang, D.-Y.; You, L.-Y.; Wang, J.-L.; Wang, H.; Zhang, D.-W.; Li, Z.-T. Tetrahedron Lett. 2013, 54, 6967.
[47] (a) Gao, H. Y.; Shen, Q. J.; Zhao, X. R.; Yan, X. Y.; Pang, X.; Jin, W. J. J. Mater. Chem. 2012, 22, 5336.
(b) Liu, R.; Wang, H.; Jin, W. J. Cryst. Growth Des. 2017, 17, 3331.
(c) Wu, W. X.; Wang, H.; Jin, W. J. Cryst. Growth Des. 2018, 18, 6742.
[48] Sun, H.; Wang, M.; Khan, A.; Shan, Y.; Zhao, K.; Usman, R.; Xu, C. ChemistrySelect 2017, 2, 6323.
[49] Zhu, W.; Zheng, R.; Zhen, Y.; Yu, Z.; Dong, H.; Fu, H.; Shi, Q.; Hu, W. J. Am. Chem. Soc. 2015, 137, 11038.
[50] Li, J.; Hu, Y.-H.; Ge, C.-W.; Gong, H.-G.; Gao, X.-K. Chin. Chem. Lett. 2018, 29, 423.
[51] Zhuo, M.-P.; Tao, Y.-C.; Wang, X.-D.; Wu, Y.; Chen, S.; Liao, L.-S.; Jiang, L. Angew. Chem., Int. Ed. 2018, 57, 11300.
[52] Wang, Y.; Shang, H.; Li, B.; Zhang, H.; Jiang, S. CrystEngComm 2017, 19, 3801.
[53] Liu, Z.-X.; Sun, Y.; Feng, Y.; Chen, H.; He, Y.-M.; Fan, Q.-H. Chem. Commun. 2016, 52, 2269.
[54] Li, C.; Li, L.; Yang, X.; Jin, W. J. Colloids Surf., A 2017, 520, 497.
[55] Zhu, B.; Wang, J.-R.; Zhang, Q.; Mei, X. CrystEngComm 2016, 18, 6327.
[56] Pan, Z.; Fan, Z.; Lu, B.; Cheng, J. Adv. Synth. Catal. 2018, 360, 1761.
[57] Wang, Y.; Wang, J.; Li, G.-X.; He, G.; Chen, G. Org. Lett. 2017, 19, 1442.
[58] Sun, X.; Wang, W.; Li, Y.; Ma, J.; Yu, S. Org. Lett. 2016, 18, 4638.
[59] Sun, X.; Wang, W.; Ma, J.; Yu, S. Acta Chim. Sinica 2017, 75, 115(in Chinese). (孙晓阳, 王文敏, 马晶, 俞寿云, 化学学报2017, 75, 115.)
[60] Sun, X.; He, Y.; Yu, S. J. Photochem. Photobiol. A Chem. 2018, 355, 326.
[61] (a) Chen, Q.; Qiu, Z.; Yang, Z. J. Fluorine Chem. 1987, 36, 149.
(b) Huang, W.; Lü, L.; Zhang, Y. Chin. J. Chem. 1990, 350.
(c) Huang, W.; Xie, Y. Chin. Chem. Lett. 1990, 1, 165.
(d) Huang, W.; Lü, Chin. J. Chem. 1992, 10, 268.
(e) Zhang, C.-P.; Chen, Q.-Y.; Guo, Y.; Xiao, J.-C.; Gu, Y.-C. Chem. Soc. Rev. 2012, 41, 4536.
[62] (a) Li, Y.; Lu, Y.; Mao, R.; Li, Z.; Wu, J. Org. Chem. Front. 2017, 4, 1745.
(b) Chen, T.; Guo, Y.; Sun, K.; Wu, L.-Z.; Liu, W.-Q.; Liu, C.; Huang, Y.; Chen, Q.-Y. Org. Chem. Front. 2018, 5, 1045.
(c) Wang, R.; Guan, W.; Han, Z.-B.; Liang, F.; Suga, T.; Bi, X.; Nishide, H. Org. Lett. 2017, 19, 2358.
(d) Huang, Y.; Lei, Y.-Y.; Zhao, L.; Gu, J.; Yao, Q.; Wang, Z.; Li, X.-F.; Zhang, X.; He, C.-Y. Chem. Commun. 2018, 54, 13662.
(e) Li, M.; Wang, C.-T.; Qiu, Y.-F.; Zhu, X.-Y.; Han, Y.-P.; Xia, Y.; Li, X.-S.; Liang, Y.-M. Chem. Commun. 2018, 54, 5334.
(f) Guo, Q.; Wang, M.; Liu, H.; Wang, R.; Xu, Z. Angew. Chem., Int. Ed. 2018, 57, 4747.

Outlines

/