Reviews

Transition Metal Catalyzed Organic Reaction Involving Cyclodextrin

  • Chen Yaqi ,
  • Gui Xin ,
  • Duan Zunbin ,
  • Zhu Lijun ,
  • Xiang Yuzhi ,
  • Xia Daohong
Expand
  • State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum(East China), Qingdao 266580

Received date: 2018-09-06

  Revised date: 2018-12-03

  Online published: 2019-01-18

Supported by

Project supported by the the National Natural Science Foundation of China (No. 21376265).

Abstract

Cyclodextrin is a kind of cyclic oligosaccharide which is composed of the D-pyran glucose units connected with the α-1,4-glycosidic bond. Cyclodextrin has the rigidly tapered cavity of hydrophobic inner and hydrophilic outer. Cyclodextrin has been attracted more and more attention from scientists since it was discovered, owning to its special space cavity of hydrophilic inner and hydrophilic outer. As an important industrial catalyst, transition metal catalyst can combine with the cyclodextrin system to simultaneously exert the catalytic properties of the metal and the molecular recognition and phase transfer of cyclodextrin, which greatly improves its catalytic performance. In this paper, the transition metal catalyzed organic reactions involving cyclodextrin are reviewed, and these reactions are described in terms of the metal valence from 0 to 4. Finally, the development and foreground of these co-catalyst systems involving metal and cyclodextrin are prospected. It is expected that the catalytic system will have a wider application in the future, and a more efficient and selective catalytic system will be continuously developed.

Cite this article

Chen Yaqi , Gui Xin , Duan Zunbin , Zhu Lijun , Xiang Yuzhi , Xia Daohong . Transition Metal Catalyzed Organic Reaction Involving Cyclodextrin[J]. Chinese Journal of Organic Chemistry, 2019 , 39(5) : 1284 -1292 . DOI: 10.6023/cjoc201809012

References

[1] Lai, E.; Jean, M.; Shen, X. H. M. Supramolecular Chemistry:Concepts and Prospects, Peking University Press, Beijing, 2002 (in Chinese). (莱恩, Jean, M., 沈兴海, 超分子化学:概念和展望, 北京大学出版社, 北京, 2002.)
[2] Xia, D. H.; Jiang, S. J.; Li, L.-L.; Xiang, Y. Z.; Zhu, L. J. Chin. J. Chem. Eng. 2016, 24, 146.
[3] Tong, L. H. M. Cyclodextrin Chemistry-Basics and Applications, Science Press, Beijing, 2001 (in Chinese). (童林荟, 环糊精化学-基础与应用, 科学出版社, 北京, 2001.)
[4] Shen, H. M.; Ji, H. B. Chin. J. Org. Chem. 2011, 32, 791(in Chinese), (沈海民, 纪红兵, 有机化学, 2011, 32, 791.)
[5] Zhao, Y.; Huang, Y.; Zhu, H.; Zhu, Q.; Xia, Y. J. Am. Chem. Soc. 2016, 138, 16645.
[6] Menuel, S.; Léger, B.; Addad, A.; Monflier, E.; Hapiot, F. Green Chem. 2016, 18, 5500.
[7] Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J.A.; Nuzzo, R. G. Chem. Rev. 2008, 108, 494.
[8] Xiao, J.; Qi, L. Nanoscale 2011, 3, 1383.
[9] Shanmugam, M.; Kim, K. J. Electroanal. Chem. 2016, 776, 82.
[10] Cravotto, G.; Gaudino, E. C.; Tagliapietra, S.; Carnaroglio, D.; Procopio, A. Green Proc. Synth. 2012, 1, 269.
[11] Hein, J. E.; Tripp, J. C.; Krasnova, L. B.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2009, 48, 8018.
[12] Dheer, D.; Rawal, R. K.; Singh, V.; Sangwan, P. L.; Das, P.; Shankar, R. Tetrahedron 2017, 73, 4295.
[13] Patil, R. N.; Vijay Kumar, A. ACS Omega 2017, 2, 6405.
[14] Messmer, E. Z. Phys. Chem. 1927, 126, 369.
[15] Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 113, 2056.
[16] Krasinski, A.; Radic, Z.; Manetsch, R.; Raushel, J.; Taylor, P.; Sharpless, K. B.; Kolb, H. C. J. Am. Chem. Soc. 2004, 126, 12809.
[17] Hein, J. E.; Tripp, J. P.; Krasnova, L. B.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2009, 48, 1.
[18] Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.
[19] Tornoe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057.
[20] Aprahamian, I.; Dichtel, W. R.; Ikeda, T.; Heath, J. R.; Stoddart, J. F. Org. Lett. 2007, 9, 1287.
[21] Yigit, S.; Sanyal, R.; Sanyal, A. Chem. Asian J. 2011, 6, 2648.
[22] Yamada, Y. M. A.; Sarkar, S. M.; Uozumi, Y. J. Am. Chem. Soc. 2012, 134, 9285.
[23] Collinson, J.-M.; Wilton-Ely, J. D. E. T.; Diez-Gonzalez, S. Chem. Commun. 2013, 49, 11358.
[24] Xiong, X.; Chen, H.; Tang, Z.; Jiang, Y. RSC Adv. 2014, 4, 9830.
[25] White, J. R.; Price, G. J.; Schiffers, S.; Raithby, P. R.; Plucinski, P. K.; Frost, C. G. Tetrahedron Lett. 2010, 51, 3913.
[26] Brotherton, W. S.; Michaels, H. A.; Simmons, J. T.; Clark, R. J.; Dalal, N. S.; Zhu, L. Org. Lett. 2009, 11, 4954.
[27] Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302.
[28] Zhu, L.; Lynch, V. M.; Ansly, E. V. Tetrahedron 2004, 60, 7267.
[29] Zhang, H.; Tanimoto, H.; Morimoto, T.; Nishiyama, Y.; Kakiuchi, K. Tetrahedron 2014, 70, 9828.
[30] Ramesh, C.; Banerjee, J.; Pal, R.; Das, B. Adv. Synth. Catal. 2003, 345, 557.
[31] Sheng, S. R.; Wang, Q. Y.; Ding, Y.; Liu, X. L.; Cai, M. Z. Catal Lett. 2009, 128, 418.
[32] Reddi, M. N. K.; Satheesh, K. B.; Anil, K. M.; Arulselvan, P.; Ibrahim, K. S.; Lasekan, O. Molecules 2012, 17, 7543.
[33] Ramesh, C.; Banerjee, J.; Pal, R.; Das, B. ChemInform 2010, 345, 557.
[34] Dabbawala, A. A.; Sudheesh, N.; Bajaj, H. C. Dalton. Trans. 2012, 41, 2910.
[35] Datta, K. K. R.; Srinivasan, B.; Balaram, H.; Eswaramoorthy, M. J Chem. Sci. 2008, 120, 579.
[36] Nie, R.; Sang, R.; Ma, X.; Zheng, Y.; Cheng, X.; Li, W.; Wu, Y. J. Catal. 2016, 344, 286.
[37] Yao, Z.; Hong, S.; Zhang, W.; Liu, M.; Deng, W. Tetrahedron Lett. 2016, 57, 910.
[38] Zhang, P.; Meijide, S. J.; Driant, T.; Derat, E.; Zhang, Y.; Ménand, M. Angew. Chem. 2017, 129, 10961.
[39] (a) Kaboudin, B.; Abedi, Y.; Yokomatsu, T. Eur. J. Org. Chem. 2011, 6656.
(b) Kaboudin, B.; Abedi, Y.; Yokomatsu, T. Org. Biomol. Chem. 2012, 10, 4543.
[40] Kaboudin, B.; Mostafalu, R.; Yokomatsu, T. ChemInform 2013, 44, 2262.
[41] Perez, A. L.; Moseguer, J. O.; Marques, P. R.; Corma, A. Angew. Chem., Int. Ed. 2013, 125, 11768.
[42] Hoffmann, I.; Blumenröder, B.; Thumann,S. O. N.; Dommer, S.; Schatz, J. Green Chem. 2015, 17, 3844.
[43] Saito, N.; Taniguchi, T.; Hoshiya, N.; Shuto, S.; Arisawa, M.; Sato, Y. Green Chem. 2015, 17, 2358.
[44] (a) Zhong, R.; Pöthig, A.; Feng, Y.; Riener, K.; Herrmann, W. A.; Kühn, F. E. Green Chem. 2014, 16, 4955.
(b) Billingsley, K.; Buchwald, S. L. J. Am. Chem. Soc. 2007, 38, 3358.
(c) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 30, 4369.
(d) Martin R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.
(e) Vellakkaran, M.; Andappan, M. M. S.; Kommu, N. Green Chem. 2014, 16, 2788.
[45] Raihana, I. K.; Kasi, P. Green Chem. 2016, 18, 4791.
[46] Qi, M.; Tan, P. Z. Xue, F.; Malhi, H. S.; Zhang, Z. X.; Young, D. J. Rsc. Adv. 2014, 5, 3590.
[47] Zhou, X.; Guo, X.; Jian, F.; Wei, G. ACS Omega 2018, 3, 4418.
[48] Guo, Y.; Li, J.; Zhao, F.; Lan, G.; Li, L.; Liu, Y.; Yang, R. RSC Adv. 2016, 6, 7950.
[49] Imran, K. R.; Pitchumani, K. ACS Sustainable Chem. Eng, 2018.
[50] Poulos, T. L. Chem. Rev. 2014, 114, 3919.
[51] Sreenilayam, G.; Fasan, R. Chem. Commun. 2015, 51, 1532.
[52] Xu, X.; Li, C.; Tao, Z.; Pan, Y. Adv. Synth. Catal. 2015, 357, 3341.
[53] Wang, M. L.; Fang, G. D; Liu, P. Appl. Catal., B 2016, 188, 113.
[54] Guo, Y.; Guo, S.; Ren, J.; Zhai, Y.; Dong, S.; Wang, E. ACS Nano. 2010, 4, 4001.
[55] Sharavath, V.; Sarkar, S.; Gandla, D.; Ghosh, S. Electrochim. Acta 2016, 210, 385.
[56] Mohamed, M. A.; Shukla, A.; Sandhya, K. Y. Environ. Prog. Sustainable 2016, 35, 1283.
[57] Subramanian, R.; Ponnusamy, V. J. Mater. Sci.: Mater. Electron. 2016, 28, 1.
[58] Sun, N.; Wang, T.; Liu, C. Wood. Sci. Tenol. 2016, 50, 1.

Outlines

/