Articles

Strong-Acid Cation Exchange Resin Catalyzed Synthesis of Bis(indolyl)methanes in Water

  • Zhang Ruize ,
  • Wang Guodong ,
  • Li Hongshuang ,
  • Duan Guiyun ,
  • Wang Kai ,
  • Xia Chengcai
Expand
  • a Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016;
    b Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016

Received date: 2018-10-11

  Revised date: 2018-12-18

  Online published: 2019-01-18

Supported by

Project supported by the Medical and Health Technology Development Program in Shandong Province (No. 2015WS0102).

Abstract

An efficient protocol for conversion of aldehyde and indole into bis(indolyl)methanes derivatives catalyzed by strong-acid cation exchange resin has been developed. The H2O was used as solution and recycle catalyst can be used six times. Various bis(indolyl)methanes derivatives were obtained in excellent yields.

Cite this article

Zhang Ruize , Wang Guodong , Li Hongshuang , Duan Guiyun , Wang Kai , Xia Chengcai . Strong-Acid Cation Exchange Resin Catalyzed Synthesis of Bis(indolyl)methanes in Water[J]. Chinese Journal of Organic Chemistry, 2019 , 39(5) : 1429 -1435 . DOI: 10.6023/cjoc201810011

References

[1] (a) Garbe, T. R.; Kobayashi, M.; Shimizu, N.; Takesue, N.; Ozawa, M.; Yukawa, H. J. Nat. Prod. 2000, 63, 596.
(b) Bifulco, G.; Bruno, I.; Riccio, R.; Lavayre, J.; Bourdy, G. J. Nat. Prod. 1995, 58, 1254.
[2] (a) Shiri, M.; Zolfigol, M. A.; Kruger, H. G.; Tanbakouchian, Z. Chem Rev. 2010, 110, 2250.
(b) Bell, R.; Carmeli, S.; Sar, N. J. Nat. Prod. 1994, 57, 1587.
(c) Fahy, E.; Potts, B. C. M.; Faulkner, D. J.; Smith, K. J. Nat. Prod. 1991, 54, 564.
(d) Swetha, A.; MadhuBabu, B.; Meshram. H. M. Tetrahedron Lett. 2015, 56, 1775.
[3] Bharate, S. B.; Bharate, J. B.; Khan, S. I.; Tekwani, B. L.; Jacob, M. R.; Mudududdla, R.; Yadav, R. R.; Singh, B.; Sharma, P. R.; Maity, S.; Singh, B.; Khan, I. A.; Vishwakarma, R. A. Eur. J. Med. Chem. 2013, 63, 435.
[4] Sarva, S.; Harinath, J. S.; Sthanikam, S. P.; Ethiraj, S.; Vaithiyalingam, M.; Cirandur, S. R. Chin. Chem. Lett. 2016, 27, 16.
[5] (a) Sashidhara, K. V.; Kumar, A.; Kumar, M.; Srivastava, A.; Puri, A. Bioorg. Med. Chem. Lett. 2010, 20, 6504.
(b) Sashidhara, K. V.; Modukuri,R. K.; Sonkar, R.; Rao, K. B.; Bhatia, G. Eur. J. Med. Chem., 2013, 68, 38.
(c) Sashidhara, K. V.; Kumar, A.; Kumar, M.; Srivastava, A.; Puri, A. Bioorg. Med. Chem. Lett. 2010, 20, 6504.
[6] Lo, K. K. W.; Tsang, K. H. K.; Hui, W. K.; Zhu, N. Chem. Commun. 2003, 2704.
[7] (a) Mahboobi, S.; Uecker, A.; Sellmer, A.; Cénac, C.; Höcher, H.; Pongratz, H.; Eichhorn, E.; Hufsky, H.; Trümpler, A.; Sicker, M.; Heidel, F.; Fischer, T.; Stocking, C.; Elz, S.; Böhmer, F. D.; Dove, S. J. Med. Chem. 2006, 49, 3101.
(b) Kamal, A.; Srikanth, Y. V. V.; Ramaiah, M. J.; Khan, M. N. A.; Reddy, M. K.; Ashraf, M.; Lavanya, A.; Pushpavalli, S. N. C. V. L.; Pal-Bhadra, M. Bioorg. Med. Chem. Lett. 2012, 22, 571.
(c) Safe, S.; Papineni, S.; Chintharlapalli, S. Cancer Lett. 2008, 26, 326.
(d) Grosso, C.; Cardoso, A. L.; Lemos, A.; Varela, J.; Rodrigues, M. J.; Custodio, L. L.; Barreira, T. M. Eur. J. Med. Chem. 2015, 93, 9-15.
(e) Rahimi, M.; Huang, K.-L.; Tang, C. K. Cancer Lett. 2010, 295, 59.
(f) Li, Y. W.; VandenBoom, T. G.; Wang, Z. W.; Kong, D. J.; Ali, S.; Philip, P. A.; Sarkar, F. H. Cancer Res. 2010, 70, 1486.
(g) Dawson, M. I.; Ye, M.; Cao, X. H.; Farhana, L; Hu, Q. Y.; Zhao, Y.; Xu, L. P.; Kiselyuk, A.; Correa, R. G.; Yang, L.; Hou, T. J.; Reed, J. C.; Itkin-Ansari, P.; Levine, F., Sanner, M. F.; Fontana, J. A.; Zhang. X.-K. ChemMedChem 2009, 4, 1106.
[8] Plimmer, J. R.; Gammon, D. W.; Ragsdale, N. N. Encyclopedia of Agrochemicals, John Wiley and Sons, New York, 2003, 3.
[9] (a) Cherioux, F.; Guyard, L.; Audebert, P. Adv. Mater. 1998, 10, 1013.
(b) Noack, A.; Schr€oder, A.; Hartmann, H. Dyes Pigm. 2002, 57, 131.
[10] (a) Minne, S. C.; Manalis, S. R.; Quate, C. F. Appl. Phys. Lett. 1995, 67, 3918.
(b) Seyedi, N.; Khabazzadeh, H. Res. Chem. Intermed. 2015, 41, 2603.
(c) Praveen, P. J.; Parameswaran, P. S.; Majik, M. S. Synthesis 2015, 47, 1827.
(d) Shiri, M.; Zolfigol, M. A.; Kruger, H. G.; Tanbakouchian, Z.; Chem. Rev. 2010, 110, 2250.
[11] (a) Noland, W. E.; Kumar, H. V.; Flick, G. C.; Aspros, C. L.; Yoon, J. H.; Wilt, A. C.; Dehkordi, N.; Thao, S.; Schneerer, A. K.; Gao, S. M.; Tritch. K. J. Tetrahedron 2017, 73, 3913.
(b) Veisi, H.; Maleki, B.; Eshbala, F. H.; Veisi, H.; Masti, R.; Ashrafi, S. S.; Baghayeri, M. RSC Adv. 2014, 4, 30683.
[12] Chhattise, P. K.; Arbuj, S. S.; Mohite, K. C.; Bhavsar, S. V.; Horne, A. S.; Handore, K. N.; Chabukswar, V. V. RSC Adv. 2014, 4, 28623.
[13] Ravia, K.; Krishnakumara, B.; Swaminathana, M. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2015, 45, 1380.
[14] (a) Mendes, S. R.; Thurow, S.; Penteado, F.; Silva, M. S. D.; Gariani, R. A.; Perin, G.; Lenardão, E. J. Green Chem. 2015, 17, 4334.
(b) Ghorbani-Vaghei, R.; Veisi, H.; Keypour, H.; Dehghani- Firouzabadi, A. A. Mol. Diversity 2010, 14, 87.
[15] Shirini, F.; Khaligh, N. G. Chin. J. Catal. 2013. 34, 1890.
[16] Tumtin, S.; Kathing, C.; Phucho, I. T.; Nongrum, R.; Myrboh, B.; Nongkhlaw, R. J. Chin. Chem. Soc. 2015, 62, 321.
[17] Veisi, H.; Gholbedaghi, R.; Malakootikhah, J.; Sedrpoushan, A.; Maleki, B.; Kordestani, D. J. Heterocycl. Chem. 2010, 47, 1398.
[18] Silveira, C. C.; Mendes, S. R.; Villetti, M. A.; Back, D. F.; Kaufman, T. S. Green Chem. 2012, 14, 2912.
[19] Liang, D. Q.; Huang, W. Z.; Yuan, L.; Ma, Y. H.; Ma, J. M.; Ning, D. M. Catal. Commun. 2014, 55, 11.
[20] Jejurkar, V. P.; Khatri, C. K.; Chaturbhuj, G. U.; Saha, S. ChemistrySelect 2017, 2, 11693.
[21] (a) Feng, X. L.; Guan, C. J.; Zhao, C. X. Synth. Commun. 2004, 34, 487.
(b) Surasania, R.; Kalitaa, D.; Chandrasekharb, K. B. Green Chem. Lett. Rev. 2013, 6, 113.
(c) Lin, Z. H.; Guan, C. J.; Feng, X. L.; Zhao, C. X. J. Mol. Catal. A:Chem. 2006, 247, 19.
[22] Fekri, L. Z.; Nikpassand, M.; Kohansal, M. Russ. J. Gen. Chem. 2015, 85, 2861.
[23] Griffiths, K.; Kumar, P.; Akien, G. R.; Chilton, N. F.; Abdul-Sada, A.; Tizzard, G. J.; Coles, S. J.; Kostakis, G. E. Chem. Commun. 2016, 52, 7866.
[24] (a) Mobaraki, A.; Movassagh, B.;Karimi, B. Appl. Catal. A:Gen. 2014, 472, 123.
(b) Wang, A. Q.; Liu, X.; Su, Z. X.; Jing, H. W. Sci. Technol. 2014, 4, 71.
(c) Rafiee, E.; Eavani, S.; Malaekeh-Nikouei, B. Chem. Lett. 2012, 41, 438.
[25] (a) Saffar-Teluri, A. Res. Chem. Intermed. 2014, 40, 1061.
(b) Shirini, F.; Lati, M. P. J. Iran. Chem. Soc. 2017, 14, 75.
(c) Sadeghi, B.; Tavasoli, F. A.; Hassanabadi, A. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2015, 45, 1396.
[26] Shi, X. L.; Lin, H. K.; Li, P. Y.; Zhang, W. Q. ChemCatChem 2014, 6, 2947.
[27] Singh, N. G.; Nongrum, R.; Kathing, C.; Rani, J. W. S.; Nongkhlaw, R. Green Chem. Lett. Rev. 2014, 7, 137.
[28] Gao, G.; Han, Y.; Zhang, Z. H. ChemistrySelect 2017, 2, 11561.
[29] Hirashita, T.; Ogawa, M.; Hattori, R.; Okochi, S.; Araki, S. Bull. Chem. Soc. Jpn. 2015, 88, 1760.
[30] (a) Wu, C.; Lu, L. H.; Peng, A. Z.; Jia, G. K.; Peng, C.; Cao, Z.; Tang, Z. L.; He, W. M.; Xu, X. H. Green Chem., 2018, 20, 3683.
(b) Zou, B. Yu, B.; Hu, C. W. J. CO2 Util. 2018, 26, 314.
(c) Xie, L. Y.; Peng, S.; Lu, L. H.; Hu, J.; Bao, W. H.; Zeng, F.; Tang, Z. L.; Xu, X. H.; He, W. M. ACS Sustainable Chem. Eng. 2018, 6, 7989.
[31] (a) Zhou, Z.; Duan, J. F.; Mu, X. J.; Xiao. S. Y. Chin. J. Org. Chem. 2018, 38, 585.
(b) Yue, H. L.; Bao, P. L.; Wang, L. L.; Lv, X. X.; Yang, D. S.; Wang, H.; Wei, W. Chin. J. Org. Chem. 2019, 39, 463.
(c) Zhao, S. Y.; Wang, Z. L. Chin. J. Org. Chem. 2016, 36, 862(in Chinese). (赵苏艳, 王祖利, 有机化学, 2016, 36, 862.)
(d) Li, W. Y.; Yin, G. X.; Huang, L.; Xiao, Y.; Fu, Z. M.; Xin, X.; Liu, F.; Li, Z. Z.; He, W. M. Green Chem. 2016, 18, 4879.
(e) Wu, C.; Xin, X.; Fu, Z. M.; Xie, L. Y.; Liu, K. J.; Wang, Z.; Li, W. Y.; Yuan, Z. H.; He, W. M. Green Chem. 2017, 19, 1983.

Outlines

/