Articles

Electrochemical Synthesis of Tetrasubstituted Hydrazines by Dehydrogenative N-N Bond Formation

  • Feng Enqi ,
  • Hou Zhongwei ,
  • Xu Haichao
Expand
  • College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005

Received date: 2018-12-04

  Revised date: 2018-12-27

  Online published: 2019-01-18

Supported by

Project supported by the National Natural Science Foundation of China (No. 21672178) and the National Foundation for Fostering Talents in Basic Science (No. J1310024).

Abstract

An electrochemical synthesis of tetrasubstituted hydrazines through dehydrogenative dimerization of secondary amines has been developed. The reactions are conducted in a simple undivided cell with constant current. The use of electricity to promote the reactions obviates the need for transition metal catalysts and oxidizing reagents, providing an efficient and sustainable access to tetrasubstituted hydrazines with diverse electronic properties.

Cite this article

Feng Enqi , Hou Zhongwei , Xu Haichao . Electrochemical Synthesis of Tetrasubstituted Hydrazines by Dehydrogenative N-N Bond Formation[J]. Chinese Journal of Organic Chemistry, 2019 , 39(5) : 1424 -1428 . DOI: 10.6023/cjoc201812007

References

[1] (a) Blair, L. M.; Sperry, J. J. Nat. Prod. 2013, 76, 794.
(b) Zhang, Q.; Mándi, A.; Li, S.; Chen, Y.; Zhang, W.; Tian, X.; Zhang, H.; Li, H.; Zhang, W.; Zhang, S.; Ju, J.; Kurtán, T.; Zhang, C. Eur. J. Org. Chem. 2012, 5256.
(c) Shoeb, M.; Celik, S.; Jaspars, M.; Kumarasamy, Y.; MacManus, S. M.; Nahar, L.; Thoo-Lin, P. K.; Sarker, S. D. Tetrahedron 2005, 61, 9001.
(d) Higashibayashi, S.; Pandit, P.; Haruki, R.; Adachi, S.-i.; Kumai, R. Angew. Chem., Int. Ed. 2016, 55, 10830.
[2] Hou, Z. W.; Mao, Z. Y.; Melcamu, Y. Y.; Lu, X.; Xu, H.-C. Angew. Chem., Int. Ed. 2018, 57, 1636.
[3] (a) Reddy, C. B. R.; Reddy, S. R.; Naidu, S. Catal. Commun. 2014, 56, 50.
(b) Yan, X.-M.; Chen, Z.-M.; Yang, F.; Huang, Z.-Z. Synlett 2011, 2011, 569.
(c) Ryan, M. C.; Martinelli, J. R.; Stahl, S. S. J. Am. Chem. Soc. 2018, 140, 9074.
(d) Fritsche, R. F.; Theumer, G.; Kataeva, O.; Knolker, H. J. Angew. Chem., Int. Ed. 2017, 56, 549.
(e) Zhu, Y.; Shi, Y. Org. Lett. 2013, 15, 1942.
[4] (a) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
(b) Tang, S.; Liu, Y.; Lei, A. Chem 2018, 4, 27.
(c) Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485.
(d) Yang, Q. L.; Fang, P.; Mei, T. S. Chin. J. Chem. 2018, 36, 338.
(e) Wiebe, A.; Gieshoff, T.; Möhle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel Siegfried, R. Angew. Chem., Int. Ed. 2018, 57, 5594.
(f) Moeller, K. D. Chem. Rev. 2018, 118, 4817.
(g) Yoshida, J.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem. Rev. 2008, 108, 2265.
(h) Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492.
[5] (a) Hayashi, R.; Shimizu, A.; Yoshida, J. J. Am. Chem. Soc. 2016, 138, 8400.
(b) Horn, E. J.; Rosen, B. R.; Chen, Y.; Tang, J.; Chen, K.; Eastgate, M. D.; Baran, P. S. Nature 2016, 533, 77.
(c) Wang, P.; Tang, S.; Huang, P.; Lei, A. Angew. Chem., Int. Ed. 2017, 56, 3009.
(d) Fu, N.; Li, L.; Yang, Q.; Luo, S. Org. Lett. 2017, 19, 2122.
(e) Feng, R.; Smith, J. A.; Moeller, K. D. Acc. Chem. Res. 2017, 50, 2346.
(f) Yang, Q. L.; Li, Y. Q.; Ma, C.; Fang, P.; Zhang, X. J.; Mei, T. S. J. Am. Chem. Soc. 2017, 139, 3293.
(g) Zhang, S.; Li, L.; Xue, M.; Zhang, R.; Xu, K.; Zeng, C. Org. Lett. 2018, 20, 3443.
(h) Fu, N.; Sauer, G. S.; Saha, A.; Loo, A.; Lin, S. Science 2017, 357, 575.
(i) Li, J.; Huang, W.; Chen, J.; He, L.; Cheng, X.; Li, G. Angew. Chem., Int. Ed. 2018, 57, 5695.
(j) Yuan, Y.; Cao, Y.; Qiao, J.; Lin, Y.; Jiang, X.; Weng, Y.; Tang, S.; Lei, A. Chin. J. Chem. 2019, 37, 49.
(k) Ye, Z. H.; Ding, M. R.; Wu, Y. Q.; Li, Y.; Hua, W. K.; Zhang, F. Z. Green Chem. 2018, 20, 1732.
(l) Qian, P.; Su, J.-H.; Wang, Y.; Bi, M.; Zha, Z.; Wang, Z. J. Org. Chem. 2017, 82, 6434.
(m) Lin, D. Z.; Huang, J. M. Org. Lett. 2018, 20, 2112.
(n) Zhang, L.; Zhang, Z. X.; Hong, J. T.; Yu, J.; Zhang, J. N.; Mo, F. Y. J. Org. Chem. 2018, 83, 3200.
[6] Rosen, B. R.; Werner, E. W.; O'Brien, A. G.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5571.
[7] (a) Zhu, L.; Xiong, P.; Mao, Z. Y.; Wang, Y. H.; Yan, X.; Lu, X.; Xu, H.-C. Angew. Chem., Int. Ed. 2016, 55, 2226.
(b) Xiong, P.; Xu, H.-H.; Song, J.; Xu, H.-C. J. Am. Chem. Soc. 2018, 140, 2460.
(c) Qian, X.-Y.; Li, S.-Q.; Song, J.; Xu, H.-C. ACS Catal. 2017, 2730.
(d) Cai, C.-Y.; Xu, H.-C. Nat. Commun. 2018, 9, 3551.
(e) Hou, Z.-W.; Yan, H.; Song, J.-S.; Xu, H.-C. Chin. J. Chem. 2018, 36, 909.
(f) Xiong, P.; Xu, H.-H.; Song, J.; Xu, H.-C. J. Am. Chem. Soc. 2018, 140, 2460.
(g) Zhao, H.-B.; Xu, P.; Song, J.; Xu, H.-C. Angew. Chem., Int. Ed. 2018, 57, 15153.
(h) Wu, Z.-J.; Li, S.-R.; Xu, H.-C. Angew. Chem., Int. Ed. 2018, 57, 14070.
(i) Xu, F.; Li, Y.-J.; Huang, C.; Xu, H.-C. ACS Catal. 2018, 3820.
(j) Hou, Z. W.; Mao, Z. Y.; Zhao, H. B.; Melcamu, Y. Y.; Lu, X.; Song, J.; Xu, H.-C. Angew. Chem., Int. Ed. 2016, 55, 9168.
(k) Wu, Z.-J.; Li, S.-R.; Long, H.; Xu, H.-C. Chem. Commun. 2018, 54, 4601.
(l) Hou, Z.-W.; Mao, Z.-Y.; Song, J.; Xu, H.-C. ACS Catal. 2017, 5810.
[8] (a) Gieshoff, T.; Kehl, A.; Schollmeyer, D.; Moeller, K. D.; Waldvogel, S. R. J. Am. Chem. Soc. 2017, 139, 12317.
(b) Gieshoff, T.; Schollmeyer, D.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2016, 55, 9437.

Outlines

/