Chinese Journal of Organic Chemistry >
Progress in the Synthesis and Applications of Phosphaalkenes
Received date: 2018-11-29
Revised date: 2018-12-27
Online published: 2019-01-31
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21462019, 21676131), the Bureau of Science & Technology of Jiangxi Province (No. 20143ACB20012), the Education Department of Jiangxi Province (No. GJJ180625) and the Ph.D Start-up Funds of Jiangxi Science & Technology Normal University (No. 2018BSQD025).
The phosphaalkenes, as an important part of organophosphorus chemistry, play a very important role in the field of homogeneous catalysis and functional materials due to special properties of P=C unit. However, the difficult access to phosphaalkene compounds and their less stability have severely retarded the progress of the phosphaalkene chemistry. In this paper, the recent advances in phosphaalkenes, introducing the properties, synthetic methods, and applications of phosphaalkenes to provide some reference for related researcher are reviewed.
Key words: low coordination phosphorus; P=C double bond; phosphaalkene; phosphinine
Huang Haiyang , Ding Haixin , Xu Shuangshuang , Bai Jiang , Xiao Qiang . Progress in the Synthesis and Applications of Phosphaalkenes[J]. Chinese Journal of Organic Chemistry, 2019 , 39(5) : 1263 -1276 . DOI: 10.6023/cjoc201811038
[1] (a) Appel, R.; Knoll, F.; Ruppert, I. Angew. Chem. 1981, 93, 771.
(b) Appel, R.; Knoll, F. Adv. Inorg. Chem. 1989, 33, 259.
(c) Markovski, L. N.; Romanenko, V. D. Tetrahedron 1989, 45, 6019.
(d) Regitz, M.; Binger, P. Angew. Chem. 1988, 100, 1541.
(e) Mathey F. Angew. Chem., Int. Ed. 2003, 42, 1578.
(f) Gates, D. P. New Aspects in Phosphorus Chemistry V. Springer, Berlin, Heidelberg, 2005, pp. 107~126.
(g) Russell, C. A. Coord. Chem. Rev. 2015, 297, 146.
(h) Regulska, E.; Romero-Nieto, C. Dalton Trans. 2018, 47, 10344.
(i) Tokarz, P.; Zagórski, P. M. Chem. Heterocycl. Compd. 2017, 53, 858.
(j) Francois, M.; Duan, Z. Sci. Sin.: Chim. 2010, 40, 888(in Chinese). (Francois, M., 段征, 中国科学:化学, 2010, 40, 888.)
[2] (a) Dimroth, K.; Hoffmann, P. Angew. Chem., Int. Ed. 1964, 3, 384.
(b) Allmann R. Angew. Chem., Int. Ed. 1965, 4, 150.
[3] Märkl, G. Angew. Chem., Int. Ed. 1966, 5, 846.
[4] (a) Keglevich, G.; Farkas, R.; Ludányi, K.; Kudar, V.; Hanusz, M.; Simon, K. Heteroat. Chem. 2005, 16, 104.
(b) Deschamps, E.; Ricard, L.; Mathey, F. Organometallics 2001, 20, 1499.
(c) Markovskii, L. N.; Romanenko, V. D.; Ruban, A. V.; Iksanova, S. V. Zhur. Obshch. Khim. 1982, 52, 2796.
(d) Aitken, R. A. Sci. Synth. 2001, 10, 809.
(e) Hu, Z.; Tian, R.; Zhao, K.; Liu, Y.; Duan, Z.; Mathey, F. Org. Lett. 2017, 19, 5004.
[5] (a) Washington, M. P.; Gudimetla, V. B.; Laughlin, F. L.; Deligonul, N.; He, S.; Payton, J. L.; Protasiewicz, J. D. J. Am. Chem. Soc. 2010, 132, 4566.
(b) Washington, M. P.; Payton, J. L.; Simpson, M. C.; Protasiewicz, J. D. Organometallics 2011, 30, 1975.
(c) Laughlin, F. L.; Rheingold, A. L.; Deligonul, N.; Laughlin, B. J.; Smith, R. C.; Higham, L. J.; Protasiewicz, J. D. Dalton Trans. 2012, 41, 12016.
(d) Laughlin, F. L.; Deligonul, N.; Rheingold, A. L.; Golen, J. A.; Laughlin, B. J.; Smith, R. C.; Protasiewicz, J. D. Organometallics 2013, 32, 7116.
[6] (a) Ashe Ⅲ, A. J.; Fang, X. Chem. Commun. 1999, 14, 1283.
(b) Worch, J. C.; Hellemann, E.; Pros, G.; Gayathri, C.; Pintauer, T.; Gil, R. R.; Noonan, K. J. Organometallics 2015, 34, 5366.
(c) Qiu, Y.; Worch, J. C.; Chirdon, D. N.; Kaur, A.; Maurer, A. B.; Amsterdam, S.; Noonan, K. J. Chem. Eur. J. 2014, 20, 7746.
(d) Issleib, K.; Vollmer, R. Tetrahedron Lett. 1980, 21, 3483.
(e) Worch, J. C.; Hellemann, E.; Pros, G.; Gayathri, C.; Pintauer, T.; Gil, R. R.; Noonan, K. J. Organometallics 2015, 34, 5366.
[7] (a) Zhang, L., Yu, W.; Liu, C.; Xu, Y.; Duan, Z.; Mathey, F. Organometallics 2015, 34, 5697.
(b) Aluri, B. R.; Kindermann, M. K.; Jones, P. G.; Heinicke, J. Chem. Eur. J. 2008, 14, 4328.
(c) Aluri, B. R.; Burck, S.; Gudat, D.; Niemeyer, M.; Holloczki, O.; Nyulaszi, L.; Heinicke, J. Chem. Eur. J. 2009, 15, 12263.
[8] (a) Le Floch, P. Phosphorus-Carbon Heterocycl. Chem. 2001, 485.
(b) Le Floch, P.; Mathey, F. J. Chem. Soc., Chem. Commun. 1993, 16, 1295.
(c) Mao, Y.; Mathey, F. Chem. Eur. J. 2011, 17, 10745.
[9] (a) Tabellion, F.; Peters, C.; Fischbeck, U.; Regitz, M.; Preuss, F. Chem. Eur. J. 2000, 6, 4558.
(b) Tabellion, F.; Nachbauer, A.; Leininger, S.; Peters, C.; Preuss, F.; Regitz, M. Angew. Chem., Int. Ed. 1998, 37, 1233.
(c) Böhm, D., Knoch, F.; Kummer, S.; Schmidt, U.; Zenneck, U. Angew. Chem., Int. Ed. 1995, 34, 198.
(d) Kobayashi, Y.; Hamana, H.; Fujino, S.; Ohsawa, A.; Kumadaki, I. J. Am. Chem. Soc. 1980, 102, 252.
(e) RKoner, A.; Pfeifer, G.; Kelemen, Z.; Schnakenburg, G.; Nyulászi, L.; Sasamori, T.; Streubel, R. Angew. Chem. 2017, 129, 9359.
[10] (a) Märkl, G.; Matthes, D. Angew. Chem., Int. Ed. 1972, 11, 1019.
(b) Märkl, G.; Dorfmeister, G. Tetrahedron Lett. 1987, 28, 1093.
(b) Bourdieu, C.; Foucaud, A. Tetrahedron Lett. 1987, 28, 4673.
(c) Märkl, G.; Dietl, S.; Ziegler, M. L.; Nuber, B. Angew. Chem., Int. Ed. 1988, 27, 389.
(d) Appel, V. R.; Poppe, M. Angew. Chem. 1989, 101, 70.
(e) Avarvari, N.; Le Floch, P.; Mathey, F. J. Am. Chem. Soc. 1996, 118, 11978.
(f) Märkl, G.; Dorges, C. Angew. Chem. 1991, 103, 82.
(g) Avarvari, N.; Floch, P. L.; Ricard, L.; Mathey, F. Organometallics 1997, 16, 4089.
(h) Frison, G.; Sevin, A.; Avarvari, N.; Mathey, F.; Floch, P. L. J. Org. Chem. 1999, 64, 5524.
[11] Becker, G. Z. Anorg. Allg. Chem. 1976, 423, 242.
[12] (a) Becker, G. Mundt, O. Z. Anorg. Allg. Chem. 1978, 443, 53.
(b) Becker, G.; RUssler, M.; Uhl, W. Z. Anorg. Allg. Chem. 1981, 473, 7.
[13] Issleib, K.; Schmidt, H.; Meyer, H. J. Organomet. Chem. 1978, 160, 47.
[14] Yam, M.; Tsang, C. W.; Gates, D. P. Inorg. Chem. 2004, 43, 3719.
[15] Klebach, T. C.; Lourens, R.; Bickelhaupt, F. J. Am. Chem. Soc. 1978, 100, 4886.
[16] Issleib, K.; Schmidt, H.; Wirkner, C. Z. Anorg. Allg. Chem. 1981, 473, 85.
[17] Becker, G.; Uhl, W.; Wessely, H. J. Z. Anorg. Allg. Chem. 1981, 479, 41.
[18] (a) Becker, G.; Becker, W.; Mundt, O. Phosphorus Sulfur 1983, 14, 267.
(b) Romanenko, V. D.; Ruban, A. V.; Chernega, A. N.; Povolotskii, M. I.; Antipin, M. Y.; Struchkov, Y. T.; Markovskii, L. N. Zh. Obsh. Khim. 1990, 59, 1718.
(c) Romanenko, V. D.; Ruban, A. V.; Povolotskii, M. I.; Polyachenko, L. K.;Markovskii, L. N. Zh. Obsh. Khim. 1986, 56, 1186.
[19] (a) Oehme, H.; Leissring, E.; Meyer, H. Tetrahedron Lett. 1980, 21, 1141.
(b) Issleib, K.; Vollmer, R. Tetrahedron Lett. 1980, 21, 3483.
[20] (a) Appel, R.; Casser, C.; Immenkeppel, M.; Knoch, F. Angew. Chem., Int. Ed. 1984, 23, 895.
(b) Appel, R.; Immenkeppel, M. Z. Anorg. Allg. Chem. 1987, 553, 7.
[21] Miyake, H.; Sasamori, T.; Tokitoh, N. Angew. Chem. 2012, 124, 3514.
[22] (a) Marinetti, A.; Mathey, F. Angew. Chem., Int. Ed. 1988, 27, 1382.
(b) Le Floch, P.; Marinetti, A.; Ricard, L.; Mathey, F. J. Am. Chem. Soc. 1990, 112, 2407.
(c) Le Floch, P.; Mathey, F. Synlett 1990, 171.
(d) Marinetti, A.; Le Floch, P.; Mathey, F. Organometallics 1991, 10, 1190.
[23] Esfandiarfard, K.; Arkhypchuk, A. I.; Orthaber, A.; Ott, S. Dalton Trans. 2016, 45, 2201.
[24] (a) Cummins, C. C.; Schrock, R. R.; Davis, W. M. Angew. Chem., Int. Ed. 1993, 32, 756.
(b) Breen, T. L.; Stephan, D. W. J. Am. Chem. Soc. 1995, 117, 11914.
(d) Masuda, J. D.; Jantunen, K. C.; Ozerov, O. V.; Noonan, K. J.; Gates, D. P.; Scott, B. L.; Kiplinger, J. L. J. Am. Chem. Soc. 2008, 130, 2408.
[25] (a) Shah, S.; Protasiewicz, J. D. Chem. Commun. 1998, 1585.
(b) Wang, H.; Zhao, W.; Zhou, Y.; Duan, Z.; Mathey, F. Eur. J. Inorg. Chem. 2011, 4585.
[26] Wright, V. A.; Gates, D. P. Angew. Chem. 2002, 114, 2495.
[27] Wright, V. A.; Patrick, B. O.; Schneider, C.;Gates, D. P. J. Am. Chem. Soc. 2006, 128, 8836.
[28] Smith, R. C.; Protasiewicz, J. D. J. Am. Chem. Soc. 2004, 126, 2268.
[29] Wagner, O.; Maas, G.; Regitz, M. Angew. Chem. 1987, 99, 1328.
[30] Regitz, M.; Heydt, H.; Wagner, O.; Schnurr, W.; Ehle, M.; Hoffmann, J. Phosphorus, Sulfur Silicon Relat. Elem. 1990, 49, 341.
[31] Sanchez, M.; Réau, R.; Marsden, C. J.; Regitz, M.; Bertrand, G. Chem. Eur. J. 1999, 5, 274.
[32] Hitchcock, P. B.; Maah, M. J.; Nixon, J. F. J. Chem. Soc., Chem. Commun. 1986, 737.
[33] Binger, P.; Glaser, G.; Albus, S.; Krüger, C. Chem. Ber. 1995, 128, 1261.
[34] Heinemann, F. W.; Kummer, S.; Seiss-Brandl, U.; Zenneck, U. Organometallics 1999, 18, 2021.
[35] Ito, S.; Sugiyama, H.; Yoshifuji, M. Chem. Commun. 2002, 1744.
[36] (a) Heinicke, J.; Tzschach, A. Z. Chem. 1980, 20, 342.
(b) Heinicke, J.; Tzschach, A. Phosphorus Sulfur 1985, 25, 345.
(d) Tian, R.; Zhang, C.; Xu, Y.; Liu, C.; Duan, Z.; Mathey, F. Chem. Eur. J. 2017, 23, 13006.
[37] Niaz, B.; Ghalib, M.; Jones, P. G.; Heinicke, J. W. Dalton Trans. 2013, 42, 9523.
[38] (a) Issleib, K.; Vollmer, R. Z. Anorg. Allg. Chem. 1981, 481, 22.
(b) Bansal, R. K.; Gupta, N.; Heinicke, J.; Nikonov, G. N.; Saguitova, F.; Sharma, D. C. Synthesis 1999, 264.
[39] (a) Aluri, B. R.; Niaz, B.; Kindermann, M. K.; Jones, P. G.; Heinicke, J. Dalton Trans. 2011, 40, 211.
(b) Ghalib, M.; Niaz, B.; Jones, P. G.; Heinicke, J. W. Heteroat. Chem. 2013, 24, 452.
(c) Heinicke, J.; Gupta, N.; Surana, A.; Peulecke, N.; Witt, B.; Steinhauser, K.; Jones, P. G. Tetrahedron 2001, 57, 9963.
(d) Bansal, R. K.; Gupta, N.; Heinicke, J.; Nikonov, G. N.; Saguitova, F.; Sharma, D. C. Synthesis 1999, 264.
[40] Huang, H.; Luo, H.; Tao, G.; Cai, W.; Cao, J.; Duan, Z.; Mathey, F. Org. Lett. 2018, 20, 1027.
[41] (a) Schmidpeter, A.; Willhalm, A. Angew. Chem., Int. Ed. 1984, 23, 903.
(b) Märkl, G.; Trötsch, I. Angew. Chem., Int. Ed. 1984, 23, 901.
(c) Rösch, W.; Regitz, M. Angew. Chem., Int. Ed. 1984, 96, 898.
[42] (a) Chia, S. P.; Li, Y.; So, C. W. Organometallics 2013, 32, 5231.
(b) Chapyshev, S. V.; Anisimov, V. M. Chem. Heterocycl. Compd. 1997, 33, 587.
(c) Choong, S. L.; Nafady, A.; Stasch, A.; Bond, A. M.; Jones, C. Dalton Trans. 2013, 42, 7775.
(d) Sklorz, J. A.; Hoof, S.; Sommer, M. G.; Weißer, F.; Weber, M.; Wiecko, J.; Müller, C. Organometallics 2014, 33, 511.
(e) Takeda, H.; Ishitani, O. Coord. Chem. Rev., 2010, 254, 346.
(f) Lowe-Ma, C. K.; Nissan, R. A.; Wilson, W. S. J. Org. Chem. 1990, 55, 3755
(g) Sklorz, J. A.; Hoof, S.; Rades, N.; De Rycke, N.; Koenczoel, L.; Szieberth, D.; Mueller, C. Chem. Eur. J. 2015, 21, 11096.
[43] (a) Chapyshev, S. V.; Bergsträsser, U.; Regitz, M. Khim. Geterotsikl. Soedin. 1996, 1, 67.
(b) Märkl, G.; Troetsch-Schaller, I.; Hölzl, W. Tetrahedron Lett. 1988, 29, 785.
(c) Yeung Lam Ko, Y. Y. C.; Carrié, R. J. Chem. Soc., Chem. Commun. 1984, 1640.
(d) Bansal, R. K.; Gupta, N. Sci. Synth. 2014, 46, 754.
(e) Sklorz, J. A.; Mueller, C. Eur. J. Inorg. Chem. 2016, 2016, 595.
(f) Fuchs, E. P. O.; Hermesdorf, M.; Schnurr, W.; Rösch, W.; Heydt, H.; Regitz, M.; Binger, P J. Organomet. Chem. 1988, 338, 329.
[44] Märkl, G. Angew. Chem. 1966, 78, 907.
[45] (a) Märkl, G.; Lieb, F.; Merz, A. Angew. Chem. 1967, 79, 475.
(b) Weemers, J. J.; van der Graaff, W. N.; Pidko, E. A.; Lutz, M.; Müller, C. Chem. Eur. J. 2013, 19, 8991.
[46] Ashe Ⅲ, A. J.; Shu, P. J. Am. Chem. Soc. 1971, 93, 1804.
[47] Avarvari, N.; Le Floch, P.; Mathey, F. J. Am. Chem. Soc. 1996, 118, 11978.
[48] Hunter, R. A.; Whitby, R. J.; Light, M. E.; Hursthouse, M. B. Tetrahedron Lett. 2004, 45, 7633.
[49] (a) Habicht, M. H.; Wossidlo, F.; Bens, T.; Pidko, E. A.; Müller, C. Chem. Eur. J. 2018, 24, 944.
(b) Rösch, W.; Regitz, M. Z. Naturforsch. B 1986, 41, 931.
(c) Wrackmeyer, B.; Klaus, U. Organomet. Chem. 1996, 520, 211.
(d) Ko, Y. Y. Y. L.; Carrié, R. J. Chem. Soc., Chem. Commun. 1984, 1640.
(e) Fink, J.; Rösch, W.; Vogelbacher, U. J.; Regitz, M. Angew. Chem. 1986, 98, 265.
(f) Fink, J.; Rösch, W.; Vogelbacher, U. J.; Regitz, M. Angew. Chem., Int. Ed. 1986, 25, 280.
(g) Blatter, K.; Rösch, W.; Vogelbacher, U. J.; Fink, J.; Regitz, M. Angew. Chem., Int. Ed. 1987, 26, 85.
[50] Märkl, G.; Jin, G. Y.; Silbereisen, E. Angew. Chem., Int. Ed. 1982, 21, 370.
[51] (a) Wang, H.; Li, C.; Geng, D.; Chen, H.; Duan, Z.; Mathey, F. Chem. Eur. J. 2010, 16, 10659.
(b) Chen, H.; Li, J.; Wang, H.; Liu, H.; Duan, Z.; Mathey, F. Eur. J. Inorg. Chem. 2011, 1540.
[52] Regitz, M.; Binger, P. Angew. Chem. 1988, 100, 1541.
[53] Mei, Y.; Wu, D. J.; Borger, J. E.; Grützmacher, H. Angew. Chem., Int. Ed. 2018, 57, 5512.
[54] (a) Nakajima, K.; Takata, S.; Sakata, K.; Nishibayashi, Y. Angew. Chem. 2015, 127, 7707.
(b) Nakajima, K.; Liang, W.; Nishibayashi, Y. Org. Lett. 2016, 18, 5006.
[55] Zhang, L.; Yang, F.; Tao, G.; Qiu, L.; Duan, Z.; Mathey, F. Eur. J. Inorg. Chem. 2017, 2355.
[56] (a) Wang, L.; Zhang, L.; Shi, H.; Duan, Z.; Mathey, F. Synlett 2013, 24, 2006.
(c) Wang, L.; Wang, Z.; Wang, Q.; Duan, Z.; Mathey, F. Dalton Trans. 2015, 44, 3717.
(d) Huang, H.; Wei, Z.; Wang, M.; Duan, Z.; Mathey, F. Eur. J. Org. Chem. 2017, 5724.
[57] (a) Märkl,G.; Matthes, D. Angew. Chem., Int. Ed. 1972, 11, 1019.
(b) Märkl, G.; Dorfmeister, G. Tetrahedron Lett. 1987, 28, 1093.
(c) Bourdieu, C.; Foucaud, A. Tetrahedron Lett. 1987, 28, 4673.
(d) Markl, G.; Dietl, S.; Ziegler, M. L.; Nuber, B. Angew. Chem., Int. Ed. 1988, 27, 389.
(e) Appel, V. R.; Poppe, M. Angew. Chem. 1989, 101, 70.
[58] Huang, H.; Wei, Z.; Hou, J.; Wang, R.; Tao, G.; Wang, M.; Mathey, F. Eur. J. Org. Chem. 2018, 2018, 2863.
[59] (a) Kobayashi, Y.; Kumadaki, I.; Ohsawa, A.; Hamana, H. Tetrahedron Lett. 1976, 17, 3715.
(b) Kobayashi, Y.; Kumakaki, I.; Oshaea, A.; Hamana, H. Tetrahedron Lett. 1977, 10, 867.
(c) Kobayashi, Y.; Hamana, H.; Fujino, S.; Ohsawa, A.; Kumadaki, I. J. Am. Chem. Soc. 1980, 102, 252.
[60] Böhm, D.; Knoch, F.; Kummer, S.; Schmidt, U.; Zenneck, U. Angew. Chem., Int. Ed. 1995, 34, 198.
[61] (a) Hofmann, M. A., Heydt, H., Regitz, M. Synthesis 2001, 0463.
(b) Hofmann, M. A.; Bergsträßer, U.; Reiß, G. J.; Nyulászi, L.; Regitz, M. Angew. Chem., Int. Ed. 2000, 39, 1261.
[62] (a) Binger, P.; Stannek, J.; Gabor, B.; Mynott, R.; Bruckmann, J.; Krüger, C.; Leininger, S. Angew. Chem., Int. Ed. 1995, 34, 2227.
(b) Tabellion, F.; Nachbauer, A.; Leininger, S.; Peters, C.; Preuss, F.; Regitz, M. Angew. Chem., Int. Ed. 1998, 37, 1233.
(c) Tabellion, F.; Peters, C.; Fischbeck, U.; Regitz, M.; Preuss, F. Chem. Eur. J. 2000, 6, 4558.
(d). Heydt, H. New Aspects in Phosphorus Chemistry Ⅱ, Springer, Berlin, Heidelberg, 2003, pp. 215~249.
(e) Trincado, M.; Rosenthal, A. J.; Vogt, M.; Grützmacher, H. Eur. J. Inorg. Chem. 2014, 1599.
[63] Koner, A.; Pfeifer, G.; Kelemen, Z.; Schnakenburg, G.; Nyulászi, L.; Sasamori, T.; Streubel, R. Angew. Chem., Int. Ed. 2017, 56, 9231.
[64] Yruegas, S.; Barnard, J. H.; Al-Furaiji, K.; Dutton, J. L.; Wilson, D. J.; Martin, C. D. Organometallics 2018, 37, 1515.
[65] Minami, T.; Okamoto, H.; Ikeda, S.; Tanaka, R.; Ozawa, F.; Yoshifuji, M. Angew. Chem., Int. Ed. 2001, 40, 4501.
[66] Ozawa, F.; Yamamoto, S.; Kawagishi, S.; Hiraoka, M.; Ikeda, S.; Minami, T.; Yoshifuji, M. Chem. Lett. 2001, 30, 972.
[67] Ozawa, F.; Okamoto, H.; Kawagishi, S.; Yamamoto, S.; Minami, T.; Yoshifuji, M. J. Am. Chem. Soc. 2002, 124, 10968.
[68] Murakami, H.; Minami, T.; Ozawa, F. J. Org. Chem. 2004, 69, 4482.
[69] Chang, Y. H.; Nakajima, Y.; Ozawa, F. Organometallics 2013, 32, 2210.
[70] Qiao, S.; Fu, G. C. J. Org. Chem. 1998, 63, 4168.
[71] Tanaka, K.; Fu, G. C. J. Org. Chem. 2001, 66, 8177.
[72] Shintani, R.; Fu, G. C. Org. Lett. 2002, 4, 3699.
[73] (a) Shintani, R.; Fu, G. C. Angew. Chem. 2003, 115, 4216.
(b) Shintani, R.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 10778.
[74] Knoch, F.; Kremer, F.; Schmidt, U.; Zenneck, U.; Le Floch, P.; Mathey, F. Organometallics 1996, 15, 2713.
[75] Le Floch, P.; Knoch, F.; Kremer, F.; Mathey, F.; Scholz, J.; Scholz, W.; Zenneck, U. Eur. J. Inorg. Chem. 1998, 119.
[76] DiMauro, E. F.; Kozlowski, M. C. J. Chem. Soc., Perkin Trans. 1 2002, 439.
[77] de Vaumas, R.; Marinetti, A.; Mathey, F. J. Organomet. Chem. 1991, 413, 411.
[78] Bauer, S.; Marinetti, A.; Ricard, L.; Mathey, F. Angew. Chem., Int. Ed. 1990, 29, 1166.
[79] (a) Schnurr, W.; Regitz, M. Tetrahedron Lett. 1989, 30, 395.
(b) Yoshifuji, M.; Yoshimura, H.; Toyota, K. Chem. Lett. 1990, 19, 827.
[80] (a) Bachrach, S. M. J. Org. Chem. 1993, 58, 541.
(b) Appel, R.; Barth, V.; Halstenberg, M. Chem. Ber. 1982, 115, 1617.
[81] Abbari, M.; Cosquer, P.; Tonnard, F.; Ko, Y. Y. C. Y. L.; Carrié, R. Tetrahedron 1991, 47, 71.
[82] Marinetti, A.; Ricard, L.; Mathey, F. Organometallics 1990, 9, 788.
[83] (a) Yoshifuji, M.; Toyota, K.; Inamoto, N. Tetrahedron Lett. 1985, 26, 1727.
(b) Meriem, A.; Majoral, J. P.; Revel, M.; Navech, J. Tetrahedron Lett. 1983, 24, 1975.
[84] Arduengo Ⅲ, A. J.; Carmalt, C. J.; Clyburne, J. A. C.; Cowley, A. H.; Pyati, R. Chem. Commun. 1997, 981.
[85] Bates, J. I., Gates, D. P. Chem. Eur. J. 2012, 18, 1674.
[86] Marinetti, A.; Mathey, F. J. Chem. Soc. Chem. Commun. 1990, 153.
[87] (a) Van Der Knaap, T. A.; Klebach, T. C.; Visser, F.; Lourens, R.; Bickelhaupt, F. Tetrahedron 1984, 40, 991.
(b) Allspach, T.; Regitz, M.; Becker, G.; Becker, W. Synthesis 1986, 31.
(c) Le Floch, P.; Mathey, F. Tetrahedron Lett. 1989, 30, 817.
(d) Le Floch, P.; Ricard, L.; Mathey, F. Polyhedron 1990, 9, 991.
(e) van der Knaap, T. A. Bickelhaupt, F. Tetrahedron 1983, 39, 3189.
[88] Märkl, G.; Seidl, E.; Trötsch, I. Angew. Chem., Int. Ed. 1983, 22, 879.
[89] Tsang, C. W.; Yam, M.; Gates, D. P. J. Am. Chem. Soc. 2003, 125, 1480.
[90] (a) Tsang, C. W.; Baharloo, B.; Riendl, D.; Yam, M.; Gates, D. P. Angew. Chem. 2004, 116, 5800.
(b) Dugal-Tessier, J.; Serin, S. C.; Castillo-Contreras, E. B.; Conrad, E. D.; Dake, G. R.; Gates, D. P. Chem. Eur. J. 2012, 18, 6349.
[91] Siu, P. W.; Serin, S. C.; Krummenacher, I.; Hey, T. W.; Gates, D. P. Angew. Chem. 2013, 125, 7105.
[92] Longobardi, L. E.; Russell, C. A.; Green, M.; Townsend, N. S.; Wang, K.; Holmes, A. J.; Stephan, D. W. J. Am. Chem. Soc. 2014, 136, 13453.
[93] (a) Liu, L. L.; Zhou, J.; Cao, L. L.; Andrews, R.; Falconer, R. L.; Russell, C. A.; Stephan, D. W. J. Am. Chem. Soc. 2017, 140, 147.
(b) Liu, L. L.; Zhou, J.; Andrews, R.; Stephan, D. W. J. Am. Chem. Soc. 2018, 140, 7466.
/
〈 |
|
〉 |