Chinese Journal of Organic Chemistry >
Homogeneous Catalytic Hydrogenation of Dimethyl Malonate into Methyl 3-Hydroxypropanoate
Received date: 2018-12-10
Revised date: 2019-01-10
Online published: 2019-01-31
Supported by
Project supported by the National Natural Science Foundation for Young Scientists of China (No. 21802010), the Natural Science Foundation of Anhui Province (No. 1808085QB48), and the Starting Grants for Young Teachers of Chizhou University (No. 2018YJRC001).
Ruthenium acetylacetonate and aminophosphine ligand were selected as the catalyst system and applied to the catalytic hydrogenation of dimethyl malonate into methyl 3-hydroxypropanoate. With the focus on the catalytic efficiency, the important factors with significant influences on the dimethyl malonate conversion and methyl 3-hydroxypropanoate selectivity were well discussed, including the structure and dosage of the ligand, temperature, reaction time, solvent, and so on. The results revealed that catalyst system of ruthenium acetylacetonate and o-(diphenylphosphino)aniline ligand could obtain significant catalytic results. Under the optimal reaction conditions, this catalyst system can also be applied to catalytic hydrogenation of some other esters with high efficiency.
Fang Xiaolong , Duan Ning , Zhang Min , Zhang Chunyan , Liu Rui , Zhu Hongping . Homogeneous Catalytic Hydrogenation of Dimethyl Malonate into Methyl 3-Hydroxypropanoate[J]. Chinese Journal of Organic Chemistry, 2019 , 39(5) : 1450 -1455 . DOI: 10.6023/cjoc201812014
[1] Kraus, G. A. Clean 2008, 36, 648.
[2] Arntz, D.; Wiegand, N. US 5015789, 1991.
[3] (a) Slaugh, L. H.; Weider, P. R. US 5256827, 1993.
(b) Powell, J. B.; Mullin, S. B.; Weider, P. R.; Eubanks, D. C.; Arhancet, J. P. US 5770776, 1998.
[4] (a) Kaur, G.; Srivastava, A. K.; Chand, S. Biochem. Eng. J. 2012, 64, 106.
(b) Lee, C. S.; Aroua, M. K.; Daud, W. M. A. W.; Cognet, P.; Pérès-Lucchese, Y.; Fabre, P. L.; Reynes, O.; Latapie, L. Renewable Sustainable Energy Rev. 2015, 42, 963.
[5] (a) Wang, Y.; Zhou, J.; Guo, X. RSC Adv. 2015, 5, 74611.
(b) Sun, D.; Yamada, Y.; Sato, S.; Ueda, W. Appl. Catal. B Environ. 2016, 193, 75.
[6] (a) Chen, L. F.; Guo, P. J.; Qiao, M. H.; Yan, S. R.; Li, H. X.; Shen, W.; Xu, H. L.; Fan, K. N. J. Catal. 2008, 257, 172.
(b) He, Z.; Lin, H.; He, P.; Yuan, Y. J. Catal. 2011, 277, 54.
(c) Peng, S. Y.; Xu, Z. N.; Chen, Q. S.; Chen, Y. M.; Sun, J.; Wang, Z. Q.; Wang, M. S.; Guo, G. C. Chem. Commun. 2013, 49, 5718.
(d) Ma, X. B.; Chi, H. W.; Yue, H. R.; Zhao, Y. J.; Xu, Y.; Lv, J.; Wang, S. P.; Gong, J. L. AIChE J. 2013, 59, 2530.
[7] (a) Ding, T.; Tian, H.; Liu, J.; Wu, W.; Zhao, B. Catal. Commun. 2016, 74, 10.
(b) Ding, T.; Tian, H.; Liu, J.; Wu, W.; Yu, J. Chin. J. Catal. 2016, 37, 484.
[8] (a) He, L.; Gong, X.; Ye, L.; Duan, X.; Yuan, Y. J. Energy Chem. 2016, 25, 1038.
(b) Yu, J.; Cao, J.; Du, L.; Wei, Y.; Wang, T.; Tian, H. Appl. Catal., A 2018, 555, 161.
[9] (a) Zhao, B. G.; Han, Z. B.; Ding, K. L. Angew. Chem., Int. Ed. 2013, 52, 4744.
(b) Werkmeister, S.; Junge, K.; Beller, M. Org. Process Res. Dev. 2014, 18, 289.
(c) Pritchard, J.; Filonenko, G. A.; van Putten, R.; Hensen, E. J. M.; Pidko, E. A. Chem. Soc. Rev. 2015, 44, 3808.
[10] Li, W.; Xie, J. H.; Yuan, M. L.; Zhou, Q. L. Green Chem. 2014, 16, 4081.
[11] Han, Z.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2012, 51, 13041.
[12] (a) Tan, X.; Wang, Y.; Liu, Y.; Wang, F.; Shi, L.; Lee, K. H.; Lin, Z.; Lv, H.; Zhang, X. Org. Lett. 2015, 17, 454.
(b) Tan, X.; Wang, Q.; Liu, Y.; Wang, F.; Lv, H.; Zhang, X. Chem. Commun. 2015, 51, 12193.
[13] (a) Fang, X.; Zhang, C.; Chen, J.; Zhu, H.; Yuan, Y. RSC Adv. 2016, 6, 45512.
(b) Fang, X.; Sun, M.; Zheng, J.; Li, B.; Ye, L.; Wang, X.; Cao, Z.; Zhu, H.; Yuan, Y. Sci. Rep. 2017, 7, 3961.
(c) Zhang, Y. W.; Chen, Y. L.; Fang, X. L.; Yuan, Y. Z.; Zhu, H. P. Chin. J. Org. Chem. 2017, 37, 2275(in Chinese). (张亦伟, 陈艺林, 方霄龙, 袁友珠, 朱红平, 有机化学, 2017, 37, 2275.)
[14] Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 2675.
[15] Teunissen, H. T.; Elsevier, C. J. Chem. Commun. 1997, 667.
[16] Teunissen, H. T.; Elsevier, C. J. Chem. Commun. 1998, 1367.
[17] (a) Geilen, F. M. A.; Engendahl, B.; Harwardt, A.; Marquardt, W.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2010, 49, 5510.
(b) Wesselbaum, S.; vom Stein, T.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 7499.
[18] Saudan, L. A.; Saudan, C. M.; Debieux, C.; Wyss, P. Angew. Chem., Int. Ed. 2007, 46, 7473.
[19] Geilen, F. M. A.; Engendahl, B.; Hölscher, M.; Klankermayer, J.; Leitner, W. J. Am. Chem. Soc. 2011, 133, 14349.
[20] (a) Van der Sluys, L. S.; Kubas, G. J.; Caulton, K. G. Organometallics 1991, 10, 1033.
(b) Chen, Y. Z.; Chan, W. C.; Lau, C. P.; Chu, H. S.; Lee, H. L.; Jia, G. Organometallics 1997, 16, 1241.
[21] Hamilton, R. J.; Bergens, S. H. J. Am. Chem. Soc. 2006, 128, 13700.
[22] Mirza, C.; Christian, B.; Bernhard, R.; Wolfgang, A. H.; Fritz, E. K. Angew. Chem., Int. Ed. 2011, 50, 8510.
[23] Ito, M.; Ootsuka, T.; Watari, R.; Shiibashi, A.; Himizu, A.; Ikariya, T. J. Am. Chem. Soc. 2011, 133, 4240.
[24] (a) John, J. M.; Takebayashi, S.; Dabral, N.; Miskolzie, M.; Bergens, S. H. J. Am. Chem. Soc. 2013, 135, 8578.
(b) Tan, X.; Wang, Y.; Liu, Y.; Wang, F.; Shi, L.; Lee, K. H.; Lin, Z.; Lv, H.; Zhang, X. Org. Lett. 2015, 17, 454.
[25] (a) Herd, O.; Heßler, A.; Hingst, M.; Tepper, M.; Stelzer, O. J. Organomet. Chem. 1996, 522, 69.
(b) Hingst, M.; Tepper, M.; Stelzer, O. Eur. J. Inorg. Chem. 1998, 1998, 73.
(c) Habtemariam, A.; Watchman, B.; Potter, B. S.; Palmer, R.; Parsons, S.; Parkin, A.; Sadler, P. J. J. Chem. Soc., Dalton Trans. 2001, 1306.
(d) Doherty, S.; Knight, J. G.; Scanlan, T. H.; Elsegood, M. R. J.; Clegg, W. J. Organomet. Chem. 2002, 650, 231.
(e) Han, F. B.; Zhang, Y. L.; Sun, X. L.; Li, B. G.; Guo, Y. H.; Tang, Y. Organometallics 2008, 27, 1924.
(f) Richard, V.; Ipouck, M.; Mérel, D. S.; Gaillard, S.; Whitby, R. J.; Witulski, B.; Renaud, J. L. Chem. Commun. 2014, 50, 593.
/
〈 |
|
〉 |