Articles

Molecular Design of High Energy Density Materials with Bis(3,4,5-substituted-pyrazolyl)methane Derivatives

  • Wang Wanjun ,
  • Li Huan ,
  • Pan Renming ,
  • Zhu Weihua
Expand
  • a School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094;
    b Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2018-12-01

  Revised date: 2019-02-11

  Online published: 2019-02-19

Supported by

Project supported by the National Natural Science Foundation of China (No. 51603103).

Abstract

A series of bis(3,4,5-substituted pyrazolyl)methane derivatives were designed as candidates of high energy density materials (HEDMs). The heats of formation (HOFs), electronic structure, energetic properties and thermal stabilities were studied using density functional theory (DFT) method. The difluoroamino groups could increase energy gaps of electronic structure, density and detonation properties among the title compounds. Bis[3,5-bis(difluoroamino)-4-nitropyrazolyl]methane (C2) had excellent properties of potential HEDM. Its crystal density (ρ, 2.11 g/cm3) and impact sensitivity (h50, 6.8 J) were even higher than those of hexanitrohexaazaisowurtzitane (CL-20), meanwhile its detonation velocity (D, 9.80 km/s) and detonation pressure (P, 46.62 GPa) were very close to CL-20.

Cite this article

Wang Wanjun , Li Huan , Pan Renming , Zhu Weihua . Molecular Design of High Energy Density Materials with Bis(3,4,5-substituted-pyrazolyl)methane Derivatives[J]. Chinese Journal of Organic Chemistry, 2019 , 39(5) : 1362 -1371 . DOI: 10.6023/cjoc201812001

References

[1] Fried, L. E.; Manaa, M. R.; Pagoria, P. F.; Simpson, R. L. Annu. Rev. Mater. Res. 2001, 31, 291.
[2] Strout, D. L. J. Phys. Chem. A 2004, 108, 10911.
[3] Nguyen, M. T. Coord. Chem. Rev. 2003, 244, 93.
[4] Xu, X. J.; Xiao, H. M.; Ju, X. H.; Gong, X. D.; Zhu, W. H. J. Phys. Chem. A 2006, 110, 5929.
[5] Rice, B. M.; Byrd, E. F. C.; Mattson, W. D. Struct. Bonding (Berlin) 2007, 125, 85.
[6] KlapÖtke, T. M. Struct. Bonding (Berlin) 2007, 125, 153.
[7] Benson, F. R. The High Nitrogen Compounds, Wiley-Interscience, New York, 1984.
[8] Huynh, M. H. V.; Hiskey, M. A.; Archuleta, J. G.; Roemer, E. L.; Gilardi, R. Angew Chem., Int. Ed. 2001, 43, 5658.
[9] Zhou, Y.; Long, X. P.; Wang, X.; Shu, Y. J.; Tian, A. M. Chin. J. Energ. Mater. 2006, 14, 315(in Chinese). (周阳, 龙新平, 王欣, 舒远杰, 田安民, 含能材料, 2006, 14, 315.)
[10] Lei, Y. P.; Xu, S. L.; Yang, S. Q. Chem. Propell. Polym. Mater. 2007, 5, 1(in Chinese). (雷永鹏, 徐松林, 阳世清, 化学推进剂与高分子材料, 2007, 5, 1.)
[11] Neutz, J.; Grosshardt, O.; Schaufele, S.; Schuppler, H.; Schweikert, W. Propellants, Explos., Pyrotech. 2003, 28, 181.
[12] Huynh, M. H. V.; Hiskey, M. A.; Hartline, E. L.; Montoya, D. P.; Gilardi, R. Angew. Chem., Int. Ed. 2004, 43, 4924.
[13] Yu, Z. Y.; Chen, B. H.; Yu, J. Y.; Li, W. J. Chin. J. Energ. Mater. 2004, 12, 34(in Chinese). (鱼志钰, 陈保华, 鱼江泳, 李文杰, 含能材料, 2004, 12, 34.)
[14] Qiu, L.; Xiao, H. M.; Zhu, W. H.; Ju, X. H.; Gong, X. D. Chin. J. Chem. 2006, 24, 1538.
[15] Chavez, D. E.; Hiskey, M. A.; Gilardi, R. D. Angew. Chem., Int. Ed. 2000, 39, 1791.
[16] Kerth, J.; Lobbecke, S. Propellants, Explos., Pyrotech. 2002, 27, 111.
[17] Zhang, W. Q.; Zhang, J. H.; Deng, M. C.; Qi, X. J.; Nie, F. D.; Zhang, Q. H. Nat. Commun. 2017, 8, 181.
[18] Wang, Y.; Liu, Y. J. Song, S. W.; Yang, Z. J.; Qi, X. J.; Wang, K. C.; Liu, Y.; Zhang, Q. H.; Tian, Y. Nat. Commun. 2018, 9, 2444.
[19] Hervé, G.; Roussel, C.; Graindorge, H. Angew. Chem., Int. Ed. 2010, 49, 3177.
[20] Li, Y. F.; Fan, X. W.; Wang, Z. Y.; Ju, X. H. J. Mol. Struc.: THEOCHEM 2009, 896, 96.
[21] Ravi, P.; Gore, G. M.; Tewari, S. P.; Sikder, A. K. Int. J. Quantum Chem. 2011, 111, 4352.
[22] Ravi, P.; Gore, G. M.; Sikder, A. K.; Tewari, S. P. Int. J. Quantum Chem. 2012, 112, 1667.
[23] Ravi, P.; Gore, G. M.; Tewari, S. P.; Sikder, A. K. Mol. Simulat. 2012, 38, 218.
[24] Yin, P.; Parrish, D. A.; Shreeve, J. M. J. Am. Chem. Soc. 2015, 137, 4778.
[25] Ravi, P.; Gore, G. M.; Tewari, S. P.; Sikder, A. K. Propell. Explos. Pyrot. 2012, 37, 52.
[26] Wang, Y. L.; Zhao, F. Q.; Ji, Y. P.; Pan, Q.; Yi, J. H.; An, T.; Wang, W.; Yu, T.; Lu, X. M. J. Anal. Appl. Pyrol. 2012, 98, 231.
[27] Ravi, P.; Gore, G. M.; Venkatesan, V.; Tewari, S. P.; Sikder, A. K. J. Hazard. Mater. 2010, 183, 859.
[28] Yin, P.; Mitchell, L. A.; Parrish, D. A.; Shreeve, J. M. Chem. Asian J. 2017, 12, 378.
[29] He, C.; Zhang, J.; Parrish, D. A.; Shreeve, J. M. J. Mater. Chem. A 2013, 1, 2863.
[30] Kumar, D.; Imler, G. H.; Parrish, D. A.; Shreeve, J. M. Chem. Eur. J. 2017, 23, 7876.
[31] Yin, P.; Zhang, J.; Parrish, D. A.; Shreeve, J. M. Chem. Eur. J. 2014, 20, 16529.
[32] Zhang, Y.; Parrish, D. A.; Shreeve, J. M. J. Mater. Chem. 2012, 22, 12659.
[33] Fischer, D.; Gottfried, J. L.; Klapötke, T. M.; Karaghiosoff, K.; Stierstorfer, J.; Witkowski, T. G. Angew. Chem., Int. Ed. 2016, 55, 16132.
[34] Wu, Q.; Zhu, W. H.; Xiao, H. M. J. Mol. Model. 2013, 19, 2945.
[35] Pan, Y.; Li, J. S.; Cheng, B. B.; Zhu, W. H.; Xiao, H. M. Comput. Theor. Chem. 2012, 992, 110.
[36] Wu, Q.; Pan, Y.; Zhu, W. H.; Xiao, H. M. J. Mol. Model. 2013, 19, 1853.
[37] Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B:Matter Mater. Phys. 1988, 37, 785.
[38] Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265.
[39] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010.
[40] Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580.
[41] Muthurajan, H.; Sivabalan, R.; Talawar, M. B.; Anniyappan, M.; Venugopalan, S. J. Hazard. Mater. 2006, 133, 30.
[42] Chen, Z. X.; Xiao, J. M.; Xiao, H. M.; Chiu, Y. N. J. Phys. Chem. A 1999, 103, 8062.
[43] Ju, X. H.; Li, Y. M.; Xiao, H. M. J. Phys. Chem. A 2005, 109, 934.
[44] Ju, X. H.; Wang, X.; Bei, F. L. J. Comput. Chem. 2005, 26, 1263.
[45] Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221.
[46] Curtiss, L. A.; Carpenter, J. E.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1992, 96, 9030.
[47] Atkins, P. W. Physical Chemistry, Oxford University Press, Oxford, 1982.
[48] Politzer, P.; Murry, J. S.; Grice, M. E.; DeSalvo, M.; Miller, E. Mol. Phys. 1997, 91, 923.
[49] Politzer, P.; Murry, J. S. Cent. Eur. J. Energy Mater. 2011, 8, 209.
[50] Byrd, E. F. C.; Rice, B. M. J. Phys. Chem. A 2006, 110, 1005.
[51] Kamlet, M. J.; Jacobs, S. T. J. Chem. Phys. 1968, 48, 23.
[52] Politzer, P.; Martines, J.; Murry, J. S.; Concha, M. C.; Toro-Labbé, A. Mol. Phys. 2009, 107, 2095.
[53] Pospíšil, M.; Vávra, P.; Concha, M. C.; Murry, J. S.; Politzer, P. J. Mol. Model. 2010, 16, 895.
[54] Benson, S. W. Thermochemical Kinetic, 2nd ed., Weily Interscience, New York, 1976.
[55] Mills, I.; Cvitas, T.; Homann, K.; Kallay, N.; Kuchitsu, K. Quantities, Units, and Symbols in Physical Chemistry, Blackwell Scientific Publications, Oxford, 1988.
[56] Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255.
[57] Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502.
[58] Dean, J. A. LANGE's Handbook of Chemistry, 15th ed., Chapter 6, McGraw-Hill Book Co., New York, 1999.
[59] Dean, J. A. LANGE's Handbook of Chemistry, 13th ed., Chapter 9, McGraw-Hill Book Co., New York, 1985.
[60] Shen, C.; Wang, P.; Lu, M. J. Phys. Chem. A 2015, 119, 8250.

Outlines

/